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Abstract
We generalize the canonical permanent-transitory income process to allow for
infrequent shocks. The distribution of income growth rates can then have a
discrete mass point at zero and fat tails as observed in income data. We pro-
vide analytical formulas for the unconditional and conditional distributions
of income growth rates and higher-order moments. We prove a set of identi-
fication results and numerically validate that we can simultaneously identify
the frequency, variance, and persistence of income shocks. We estimate the
income process on monthly panel data of 400,000 Danish males observed over
8 years. When allowing shocks to be infrequent, the proposed income process
can closely match the central features of both monthly and annual income
data.
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1 Introduction

To understand the consumption-saving decision households make, we must under-
stand the nature of income risk they face. The benchmark permanent-transitory in-
come process was consequently developed by Lillard and Willis (1978) and MaCurdy
(1982), and recently a burgeoning literature has focused on allowing for higher-order
risk and non-linear dynamics (see e.g. Arellano et al., 2017; De Nardi et al., 2020,
2021; Guvenen et al., 2021, 2022; Busch et al., 2022; Busch and Ludwig, 2022). How-
ever, this research has primarily used income processes with an annual frequency
and estimations of annual income data.

In this paper, we extend the canonical permanent-transitory income process to a
monthly frequency and introduce infrequent shocks. Figure 1.1, which presents
income data from Denmark, shows this is empirically relevant as approximately half
of all households experience zero month-to-month income growth. From a theoretical
standpoint, the frequency of income shocks is also important. When consumers face
many frequent income shocks they need low-return liquid assets to smooth their
consumption. If consumers instead face larger, but more infrequent shocks, they are
more willing to hold a large share of high-return illiquid assets and be wealthy hand-
to-mouth consumers (Kaplan and Violante, 2014; Larkin, 2023). Heterogeneity in
access to liquidity across households then leads to substantial heterogeneity in the
marginal propensity to consume (MPC) out of temporary income changes, which
matters for the distribution of aggregate shocks (see e.g. Kaplan et al., 2018; Kaplan
and Violante, 2018; Auclert et al., 2018, 2020).

We provide analytical formulas for how the frequency of shocks affect central mo-
ments of income growth rates, such as their variance, co-variance, and kurtosis. We
use this to show that once the arrival probabilities of the infrequent persistent and
transitory shocks are pinned down, the remaining parameters controlling the persis-
tence and volatility of shocks are identified using standard moment conditions (as
in e.g. Hryshko, 2012). In some specific cases, the arrival probabilities of shocks are
furthermore identified in closed-form from, e.g., the share of observations with zero
income growth between months. These theoretical results provide new insights into
the drivers of higher order income risk.

In the general specification, the arrival probabilities are, however, not identified in
closed-form. In a numerical exercise, we instead validate that they are simultane-
ously identified with all the other parameters by a set of standard mean, variance,
and co-variances moments combined with information on the kurtosis, and the un-
conditional and conditional distribution of income growth rates. Additionally, we
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Figure 1.1: The fit of the estimated income process.
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(b) 12-month income growth
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Notes: This figure shows the fit of the proposed incomes process estimated on monthly Danish
register data. The income process is introduced in Section 2, and the data and estimation results
are presented in detail in Section 4.

show that we are also able to identify the variance and non-zero mean of transitory
shocks, such as bonuses. Finally, our analytical formulas allow us to estimate our
model without simulating it, which computationally is orders of magnitude faster.

A key challenge in estimating income risk at high frequency is that most panel data
on income, whether based on surveys or administrative tax records, are available only
at annual frequency, sometimes even lower. We exploit a unique source of panel data
containing monthly income records for every employee in Denmark from January
2011 to December 2018. The key advantage of this dataset is the accuracy of the
income information provided, the large sample size, and the monthly frequency at
which income is recorded. In our empirical application, we investigate the dynamics
of monthly earnings for more than 400,000 Danish men with a strong attachment
to the labor market.

The key finding is that shocks to monthly earnings are rather infrequent, with es-
timated arrival probabilities of less than 30 percent across all specifications. The
estimated model fits the main features of the data reasonably well. In Figure 1.1
we plot the model-implied distributions of 1- and 12-month income growth rates to-
gether with their empirical counterparts. Importantly, we closely match the sizable
mass-point at zero for monthly income growth rates and the gradual dispersion of
the distribution of longer horizon growth rates. Aggregating our estimated monthly
income process also fits key annual moments in the data when we allow for move-
ments in and out of employment, as we illustrate in Section 4.5.

Our paper is related to the already mentioned literature on income process esti-
mation. Meghir and Pistaferri (2011) provides an extensive review of the early
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literature. We differ from, and add to, this literature by focusing on monthly in-
come dynamics. Scandinavian register data for annual income have previously been
used to estimate income processes by e.g. Browning and Ejrnæs (2013), Blundell
et al. (2015), and Druedahl and Munk-Nielsen (2018), Busch et al. (2022). Empir-
ical evidence for non-linearity and higher order risk is also provided in Halvorsen
et al. (2022a), Halvorsen et al. (2022b), Friedrich et al. (2022) and Leth-Petersen
and Sæverud (2022).

Klein and Telyukova (2013) discuss estimation of high frequency income processes
using only auto-covariances of log-income from annual data. They show that the
frequency of shocks is not identified using their proposed moments. Kaplan et al.
(2018) rely on higher-order moments of annual income growth rates to infer high
frequency earnings dynamics. Eika (2018) discusses identification of the variance
of transitory and permanent shocks using auto-covariances of growth rates when all
households receive a single shock at a random point in time during the year. He
shows that a bias arises in the transitory shock variance because a permanent shock
midway through year t induces a positive co-variance between the growth rate from
t− 1 to t and the growth rate from t to t+ 1. Crawley (2020), Crawley et al. (2022)
and Crawley and Kuchler (2023) also discuss time aggregation problems. We avoid
such problems by estimating the income process directly at the frequency at which
the wage is paid out, i.e. monthly. Based on the evidence we provide, Crawley et al.
(2022) argue for introducing “passing shocks”, where income first jumps and then
return to the old level with a fixed hazard rate.

In order to keep the focus on high-frequency dynamics we disregard some low-
frequency dynamics previously considered in the literature in relation to the life-
cycle and job shifts. This also implies we do not attempt to match the skewness
of income growth as this would require multiple permanent shocks, similar to a job
ladder model. Likewise we don’t allow for heterogeneity in the arrival rates and the
variance of shocks. Extensions in these direction are interesting, but make it a lot
more complicated to derive the analytical results we rely on for estimation. These
extensions are therefore left to future work.

The paper proceeds as follows. Section 3 presents our proposed monthly income
process and derives central analytical properties. Section 3 discusses identification
issues. Section 4 presents the Danish register data and the empirical results. Section
5 concludes. Appendix A contains the proofs, and Appendix B presents additional
tables and figures.
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2 Monthly income process

We propose to model monthly income fluctuations using a simple generalization of
the canonical persistent-transitory income process extended with infrequent persis-
tent and transitory shocks. Our infinite horizon specification for log-income, yt, in
month t is given by

yt = zt + pt + πξt ξt + πηt ηt + ϵt (2.1)

zt = zt−1 + πϕt ϕt

pt = ϱtpt−1 + πψt ψt

ϱt = 1 − πψt (1 − ρ), ρ ∈ [0, 1]

πxt ∼ Bernoulli(px), x ∈ {ϕ, η, ψ, ξ},

E[xt] = 0, x ∈ {ψ, η}

E[xt] = µx, x ∈ {ϕ, ξ}

Var[xt] = σ2
x, x ∈ {ψ, ϕ, η, ξ, ϵ}

ϕt, ψt, ηt, ξt, π
ϕ
t , π

ψ
t , π

η
t , π

ξ
t , ϵt are serially uncorrelated and i.i.d.

The income process has five components:

1. A permanent component, zt, where a shock arrives with a probability of pϕ.
The shock has a variance of σ2

ϕ and a mean of µϕ. We assume this and the
following shocks to be infrequent to allow for excess probability mass at ∆yt =
0 (something we document to be very frequent in the data).

2. A persistent component, pt, modeled as an AR(1) process, which is constant
until a shock arrives with a probability of pψ. The shock has a variance of
σ2
ψ and a mean of zero. Previous shocks depreciate with a rate of ρ. This

specification allows for excess probability mass at ∆yt = 0 even if ρ < 1. This
would not be the case if we included a more “standard” AR(1) process, and
the data thus strongly rejects such a specification.

3. A transitory component, ηt, where a shock arrives with a probability of pη.
The shock has a variance of σ2

η and a mean of zero.

4. A transitory component, ξt, where a shock arrives with a probability of pξ.
The shock has a variance of σ2

ξ and a mean of µξ.

5. An ever-present transitory shock (e.g. measurement error) with a variance of
σ2
ϵ and a mean of zero. While this shock eliminates the excess probability mass
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at ∆yt = 0 and is therefore empirically not relevant, we include it for the sake
of completeness in our theoretical results.

We analyze the model in the time limit, where the effect of the initial values for the
persistent component, pt, has died out.

The income process in eq. (2.1) nests the canonical persistent-transitory income
process by setting σ2

ϕ = σ2
ξ = σ2

ϵ = µϕ = µξ = 0 and pψ = pη = 1 such that

yt = pt + ηt

pt = ρpt−1 + ψt.

In the rest of this section, we derive several analytical properties of the income
process in eq. (2.1). These results allow us to estimate the model without simulating
it and form the basis for the identification results in Section 3.

2.1 Alternative formulation

In order to simplify the analysis of the model, it is beneficial to note that our
assumption of constant variances of the permanent and persistent shocks implies
that it is only the number of shocks and not their timing which matters. Our
assumption of no serial correlation further implies that the number of shocks in
a given time interval is binomially distributed. Consequently, an alternative, but
equivalent, formulation of the permanent and persistent components are,

zt = z0 +
nϕ−1∑
s=0

ϕs (2.2)

pt = ρnψp0 +
nψ−1∑
s=0

ρsψs (2.3)

nx ∼ Binomial(t, px), x ∈ {ϕ, ψ},

where nx is the number of arrived shocks of type x up to and including period t, and
ψs and ϕs (with a slight abuse of notation) now refer to the s’th shock of each type
(rather than the shock in period s). For later, denote the probability mass function
of the binomial distribution by fB(n|q, p) for a success probability of p and q trials.

Similarly, the k-month growth rate of the permanent component, ∆kzt = zt − zt−k,
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and the persistent component, ∆kpt = pt − pt−k, can be formulated equivalently as

∆kzt =
nϕ−1∑
s=0

ϕs (2.4)

∆kpt = (ρnψ − 1)pt−k +
nψ−1∑
s=0

ρsψs (2.5)

nx ∼ Binomial(k, px), x ∈ {ψ, ϕ}.

2.2 Stationary distribution

Lemma 1 shows that the limiting stationary distribution of the persistent compo-
nent, pt, is unaffected by the frequency of shocks. For instance, if all shocks are
Gaussian, the distribution of the persistent component is also Gaussian.

Lemma 1. If ρ ∈ [0, 1), the limiting distribution of the persistent component, pt,
exists and is independent of the arrival probabilities. In particular, the mean and
variance are

E[ lim
t→∞

pt] = 0

Var[ lim
t→∞

pt] =
σ2
ψ

1 − ρ2 .

Proof. See Online Supplemental Material A.

2.3 Conditional moments

Theorem 1 provides an expression for the mean and variance of the k-period growth
rate of income,

∆kyt = ∆kzt + ∆kpt + πηt ηt − πηt−kηt−k + πξt ξt − πξt−kξt−k + ϵt − ϵt−k, (2.6)

conditional on the number of arrived persistent and transitory shocks, and uses this
to model ∆kyt as a mixture distribution. The mean is increasing in the mean of the
permanent shock and can either be affected positively or negatively by the transitory
shock with a non-zero mean depending on when it arrives. The variance increases
with the number of both transitory and persistent shocks.

Theorem 1. Let nϕ,nψ denote the number of permanent/persistent shocks of type
ϕ and ψ arrived in the time interval [t − k + 1, t]. Let mη0,mη1 ∈ {0, 1} and
mξ0,mξ1 ∈ {0, 1} denote whether there was a transitory shock of respectively type η
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and ξ in period t− k and period t. Conditional on nϕ, nψ, mη0, mη1, mξ0, and mξ1,
the mean and variance of the k-month growth rate are

E[∆kyt|nϕ, nψ,mη0,mη1,mξ0,mξ1] = nϕµϕ + (mξ1 −mξ0)µξ (2.7)

Var[∆kyt|nϕ, nψ,mη0,mη1,mξ0,mξ1] = 2σ2
ψ

1 − ρnψ

1 − ρ2 + nϕσ
2
ϕ

+ (mξ0 +mξ1)σ2
ξ

+ (mη0 +mη1)σ2
η + 2σ2

ϵ . (2.8)

The distribution of ∆kyt is a mixture distribution. The set of components is

s = (nϕ, nψ,mη0,mη1,mξ0,mξ1) ∈ S = {0, . . . , k}2 × {0, 1}4, (2.9)

where µs ≡ E[∆kyt|s] and Ξs ≡ Var[∆kyt|s] are the mean and variance of the s’th
component, and the mixture weights are given by

ωs = fB(nϕ|k, pϕ)fB(nψ|k, pψ)fB(mη0|1, pη)fB(mη1|1, pη)fB(mξ0|1, pξ)fB(mξ1|1, pξ).
(2.10)

Proof. See Online Supplemental Material A.

Theorem 2 extends the result above to the auto-covariance of income growth con-
ditional on the number of arrived persistent and transitory shocks and uses this to
model the joint distribution of (∆kyt,∆kyt−k) as a mixture distribution.

Theorem 2. Let nϕ0, nϕ1, nψ0, nψ1, denote the number of permanent/persistent
shocks of type ϕ and ψ arrived in the time intervals [t−2k+1, t−k] and [t−k+1, t].
Let mη0,mη1,mη2 ∈ {0, 1} and mξ0,mξ1,mξ2 ∈ {0, 1} denote whether there was a
transitory shock of respectively type η and ξ in period t−2k, t−k and t. Conditional
on nϕ0, nϕ1, nψ0, nψ1, mη0, mη1, mη2, mξ0, mξ1, mξ2 the auto-covariance of k-month
income growth is

Cov[∆kyt,∆kyt−k|nψ0, nψ1,mξ1,mη1] = (ρn1ψ − 1)(1 − ρn0ψ)
1 − ρ2 σ2

ψ

− (mξ1σ
2
ξ +mη1σ

2
η + σ2

ϵ ) (2.11)

and the means and variances can be calculated as in Lemma 1.

The joint distribution of (∆kyt,∆kyt−k) is a mixture distribution. The set of com-
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ponents is

s = (nϕ0, nϕ1, nψ0, nψ1,mη0,mη1,mη2,mξ0,mξ1,mξ2)

∈ S = {0, . . . , k}4 × {0, 1}6, (2.12)

where the mean and covariance matrix of the s’th component are

µs = (µ1s, µ2s) (2.13)

Ξs =
 Ξ1s Cs

Cs Ξ2s

 , (2.14)

where

µ1s ≡ E[∆kyt−k|nϕ0, nψ0,mη0,mη1,mξ0,mξ1]

Ξ1s ≡ Var[∆kyt−k|nϕ0, nψ0,mη0,mη1,mξ0,mξ1]

µ2s ≡ E[∆kyt|nϕ1, n1ψ,mη1,mη2,mξ1,mξ2]

Ξ2s ≡ Var[∆kyt|nϕ1, nψ1,mη1,mη2,mξ1,mξ2]

Cs ≡ Cov[∆kyt,∆kyt−k|nψ0, nψ1,mξ1,mη1],

and the mixture weights are given by

ωs =
 ∏
i∈{0,1}

fB(nϕi|k, pϕ)
 ∏

i∈{0,1}
fB(nψi|k, pψ)


 ∏
i∈{0,1,2}

fB(mηi|1, pη)
 ∏

i∈{0,1,2}
fB(mξi|1, pξ)

 .
Proof. See Online Supplemental Material A.

2.4 Moments

Corollary 1 derives expressions for the mean and variance of k-month growth.

Corollary 1. The mean and variance of k-month income growth are

E[∆kyt] = kpϕµϕ (2.15)

Var[∆kyt] = 2σ2
ψ(1 − ρ̃k) + k(µ̃2

ϕ + pϕσ
2
ϕ)

+2(pξσ2
ξ + µ̃2

ξ + pησ
2
η + σ2

ϵ ) (2.16)
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where the adjusted persistence parameter is

ρ̃x ≡ (1 − pψ(1 − ρ))x, (2.17)

the long-run variance component of the persistent shock is

σ2
ψ ≡

σ2
ψ

1 − ρ2 , (2.18)

and the adjusted means are

µ̃2
ϕ ≡ pϕ(1 − pϕ)µ2

ϕ (2.19)

µ̃2
ξ ≡ pξ(1 − pη)µ2

ξ . (2.20)

Proof. See Online Supplemental Material A.

Corollary 2 derives expressions for the auto-covariance and fractional auto-covariance
of k-month growth rates.

Corollary 2. The auto-covariance and fractional auto-covariance of k-month in-
come growth are

Cov[∆kyt,∆kyt−k] = −σ2
ψ(1 − ρ̃k)2 − (pξσ2

ξ + µ̃2
ξ + pησ

2
η + σ2

ϵ ) (2.21)

Cov[∆kyt,∆kyt−ℓk] = −σ2
ψ(1 − ρ̃k)2ρ̃

(ℓ−1)k
k , ℓ ∈ {2, 3...} (2.22)

Cov[∆kyt,∆kyt−ℓ] = σ2
ψ(2ρ̃ℓ − ρ̃k−ℓ − ρ̃k+ℓ) (2.23)

+µ̃2
ϕ(k − ℓ) + σ2

ϕpϕ(k − ℓ)

for ℓ ∈ {1, 2, . . . , k − 1}.

Proof. See Online Supplemental Material A.

Corollary 3 derives expressions for the skewness and kurtosis of k-month growth
rates. We see that the model can only generate non-zero skewness if the mean of
the permanent shock, µϕ, is non-zero. From Corollary 1, we know that this mean
must be positive to get positive average income growth. To fit negative skewness
it would therefore be necessary to have multiple permanent shocks, similar to a job
ladder model, which is beyond the scope of this paper.

Corollary 3. If ψt, ξt, ηt, ϕt and ϵt are all Gaussian, the skewness and excess
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kurtosis of k-month income growth rates are

Skew[∆kyt] = −3 + 1
Ξ

3
2

∑
s∈S

ωs(µs − µ)(3Ξs + (µs − µ)2) (2.24)

Kurt[∆kyt] = 1
Ξ2

∑
s∈S

ωs(3Ξ2
s + 6(µs − µ)2Ξs + (µs − µ)4), (2.25)

where µ = E[∆kyt] and Ξ = Var[∆kyt]. If µϕ = 0 then Skew[∆kyt] = 0.

Proof. See Online Supplemental Material A.

Corollary 4 derives expressions for the changes in variances and co-variances of levels
of income.

Corollary 4. The changes in variances and co-variances of levels of income are

Var[yt+k] − Var[yt] = k(pϕσ2
ϕ + µ̃2

ϕ) (2.26)

Cov[yt, yt+k+ℓ] − Cov[yt+k, yt] =
[
(1 − pψ(1 − ρ))k+ℓ − (1 − pψ(1 − ρ))k

]
(2.27)

×
σ2
ψ

1 − ρ2

Proof. See Online Supplemental Material A.

2.5 Distributions

Corollary 5 derives an expression for the full CDF of k-month income growth rates.

Corollary 5. If ϕt, ψt, ηt, ξt, and ϵt are all Gaussian, then, using the same notation
as in Theorem 1, the CDF of k-month growth rates is

Pr[∆kyt < x] =
∑
s∈S

ωsΦ
(
x− µs√

Ξs

)
, (2.28)

where Φ(x) is the standard Gaussian CDF.

Proof. See Online Supplemental Material A.

Corollary 6 derives an expression for the full bi-variate CDF of just-connected k-
month income growth rates.

Corollary 6. If ϕt, ψt, ηt, ξt, and ϵt are all Gaussian, then, using the same notation
as in Theorem 2, the bi-variate CDF of just-connected k-month income growth rates
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is

Pr[∆kyt < x1 ∧ ∆kyt−k < x2] =
∑
s∈S

ωsΦ2

(
x1 − µ1s√

Ξ1s
,
x2 − µ2s√

Ξ2s
,

Cs√
Ξ1s

√
Ξ2s

)
, (2.29)

where Φ2(x1, x2, r) is the bi-variate Gaussian CDF with a correlation coefficient of
r.

Proof. See Online Supplemental Material A.

There does not exist an analytical expression for the bi-variate CDF, so the expres-
sion in (2.29) is in principle only analytical up to the evaluation of Φ2(•).

3 Identification

In this section, we turn to identification of the empirically relevant 11 model param-
eters,1

θ = (pϕ, pψ, pξ, pη, σξ, µξ, σϕ, σψ, ση, µϕ, ρ)

In line with our later empirical analysis, we will mainly focus on 12-month growth
rates, which are more robust to introducing seasonality than e.g. 1-month growth
rates. We first prove two informative closed-form conditional identification results.
Secondly, we numerically verify a general identification conjecture based on the
closed-form results.

3.1 Closed form results

Combining Corollary 1 and Corollary 2, we see that the shock variances and the
persistence parameter affect the variances and covariances qualitatively in the same
way as when all shocks are ever-present (see,e.g., Hryshko (2012) or Druedahl and
Munk-Nielsen (2018)). Standard identification arguments are therefore valid for
these parameters. This is formalized in Lemma 2.

Lemma 2. Given the arrival probabilities, pϕ, pψ, pξ, and pη, and the mean and
variance of the non-zero-mean transitory shock, µξ and σ2

ξ , the persistence param-
eter, ρ, and the permanent, persistent, and transitory shock variances, σ2

ϕ, σ2
ψ, and

1 The ever-present shock, ϵt, is empirically irrelevant as we observe a large share of exact zero
income growth rates.
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σ2
ξ , and the mean of the permanent shock, µϕ, are identified by

µϕ = E[∆12yt]
12pϕ

(3.1)

ρ = 1 −
1 −

(
Cov[∆12yt,∆12yt−3·12]
Cov[∆12yt,∆12yt−2·12]

) 1
12

pψ
(3.2)

σ2
ψ =

(
2(Var[∆24yt] − µ̃ϕ24) −∑

k∈{12,36} (Var[∆kyt] − µ̃ϕk)
)

(1 − ρ2)
2(ρ̃12 + ρ̃36 − 2ρ̃24)

(3.3)

σ2
ϕ =

(Var[∆24yt] − µ̃ϕ24) − (Var[∆12yt] − µ̃ϕ12) − 2σ2
ψ(ρ̃12−ρ̃24)

1−ρ2

12pϕ
(3.4)

σ2
η = −

Cov[∆12yt,∆12yt−12] + σ2
ψ(1−ρ̃12)2

1−ρ2 + pξσ
2
ξ + µ̃2

ξ

pη
. (3.5)

Proof. Follows directly from Corollary 1-2.

If the non-zero-mean shocks have zero variance, i.e. σ2
ϕ = σ2

ξ = 0, identification of the
arrival probabilities is straightforward. Lemma 3 shows that the arrival probabilities
are identified from mass points in the distribution of income growth rates.

Lemma 3. If the non-zero-mean shocks have zero variance, σ2
ϕ = σ2

ξ = 0, the
distribution of income growth rates has mass points given by

Pr[∆kyt = 0] = (1 − pψ)k
(
(1 − pξ)2 + p2

ξ

)
(3.6)

×(1 − pϕ)k(1 − pη)2

Pr[∆kyt = µϕ] = (1 − pψ)k
(
(1 − pξ)2 + p2

ξ

)
(3.7)

×kpϕ(1 − pϕ)k−1(1 − pη)2

Pr[∆kyt = µξ|∆kyt−k = 0] = (1 − pψ)k(1 − pϕ)k (3.8)

× (1 − pη)
p2
ξ + (1 − pξ)2pξ(1 − pξ)2

Pr[∆kyt = −µξ|∆kyt−k = 0] = (1 − pψ)k(1 − pϕ)k (3.9)

× (1 − pη)
p2
ξ + (1 − pξ)2 (1 − pξ)p2

ξ

and the arrival probabilities, pϕ, pψ, pξ and pη, are identified by

12



pϕ = Pr[∆12yt = µϕ]
(12Pr[∆12yt = 0]+Pr[∆12yt = µϕ])

(3.10)

pξ = Pr[∆12yt = −µξ|∆12yt−12 = 0]
Pr[∆12yt = µξ|∆12yt−12 = 0] + Pr[∆12yt = −µξ|∆12yt−12 = 0] (3.11)

pψ = 1 −

(
Pr[∆24yt=0]
Pr[∆12yt=0]

) 1
12

1 − pϕ
(3.12)

pη = 1 −
√√√√ Pr[∆12yt = 0]

(1 − pψ)12
(
(1 − pξ)2 + p2

ξ

)
(1 − pϕ)12

. (3.13)

Proof. Follows directly from the arrival of a shock being Bernoulli distributed.

3.2 Numerical identification test

When the non-zero-mean shocks have non-zero variances, σ2
ϕ, σ

2
ξ > 0, the arrival

probabilities can no longer be estimated by the knife-edge conditions in Lemma 3
because the exact mass points disappear. There will, however, still be identifying
information in the probability mass of income growth rates around these mass points.
This suggests that it is valuable to target the uni-variate and bi-variate CDFs of
income growth rates, which we showed how to calculate in Corollary 5 and Corollary
6. The slopes of the CDFs around the excess mass regions, for given means of the
permanent and transitory shocks, µϕ and µξ, will also contain valuable information
on the variances, σ2

ϕ and σ2
ξ . Additionally using the moments in Lemma 2, we

conjecture that all the parameters are identified.

To test this conjecture, we conduct the following numerical experiment. We first
draw J sets of random model parameters indexed by j,

θj0 = (pϕ, pψ, pξ, pη, σξ, µξ, σϕ, σψ, ση, µϕ, ρ)j

We draw these from a uniform distribution with pre-specified bounds. For each
random parameter set, we estimate the model parameters by minimizing

θ̂j = arg min
θ

[h(θ) − h(θj0)]′[h(θ) − h(θj0)] (3.14)

where h(•) is the vector of moments used. If the model is identified with the chosen
moments we should be able to recover the true parameter vector for each random
draw of true parameters, i.e. θ̂j = θj0.

As moments we use:
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1. Mean of 12-month growth rates:
E[∆12kyt], k ∈ {1, 2, . . . , 6}

2. Variance of 12-month growth rates:
Var[∆12kyt], k ∈ {1, 2, . . . , 6}

3. Kurtosis of 12-month growth rates:
Kurt[∆12kyt], k ∈ {1, 2, . . . , 6}

4. Auto-covariance of 12-month growth rates:
Cov[∆12yt,∆12yt−12ℓ], ℓ ∈ {1, 2, 3, 4, 5}

5. Fractional auto-covariance of 12-month growth rates:
Cov[∆12yt,∆12yt−ℓ], ℓ ∈ {1, 2, . . . , 11}

6. Unconditional CDF of 12-month growth rates:

Pr[∆12kyt < ω], ω ∈ Ω, k ∈ {1, 2, . . . , 5}

7. Conditional CDF of 12-month growth rates:
Pr[∆12yt < ω|∆12yt−12 ∈ [−0.01, 0.01]}, ω ∈ Ω

8. Unconditional CDF of 1-month growth rates:
Pr[∆yt < ω], ω ∈ Ω

9. Conditional CDF of 1-month growth rates:
Pr[∆yt < ω|∆yt−1 ∈ [−0.01, 0.01]], ω ∈ Ω

10. Changes in variance of income levels
Var[yt+12k] − Var[yt], k ∈ {1, 2, . . . , 5}

11. Changes in covariance of income levels
Cov[yt, yt+12+12ℓ] − Cov[yt+12, yt], ℓ ∈ {1, 2, . . . , 4}

where Ω = {±x, x ∈ [0.50, 0.30, 0.10, 0.05, 0.01, 10−3, 10−4}}. For the 12-month
growth rates, we thus combine standard moments for the mean, variance, and auto-
covariance with additional information in the kurtosis and unconditional and con-
ditional CDFs. To improve on identification in practice, we also include the un-
conditional and conditional CDF of 1-month growth rates, and information from
the variance and covariance of income levels. In general, we include relatively fewer
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values of ω for the conditional CDF because this moment is by far the most time-
consuming to calculate, creating a bottleneck in the estimation procedure.2 We use
the exact same moments when estimating the model on the data in the next section.3

We solve the problem in eq. (3.14) using a numerical optimizer over (pϕ, pψ, pξ, pη, σξ, µξ)
with (σϕ, σψ, ση, µϕ, ρ) implied by Lemma 2. The threat against identification is that
there is a global minimum of the objective function away from the true parameters.
On top of this, numerical optimization might, however, also result in convergence
to a (numerical) local minimum. To ensure that we give the optimizer a possibility
to end up in a global minimum away from the true parameters, we first evaluate
the objective function for M random guesses and start the optimizer in the best
guess. To minimize the risk of not having found the actual global minimum, we
additionally evaluate the objective function for a weighted average of the previous
M guesses and the true parameters, and again start the optimizer in the best guess.
The result with the lowest objective function across the two optimizer runs is the
estimate, θ̂j. In the empirical application below we implement a (costly) multi-start
estimation algorithm instead.

2 There is no closed-form expression for the bi-variate Gaussian cumulative distribution function,
but efficient quadrature-based algorithms have been invented to evaluate it efficiently.

3 Note, that we do not use any skewness moments. The reason is that our income process is not
designed to match this aspect of the data.
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Figure 3.1: Test of identification ofpϕ, pψ, pξ and pη.
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(b) pψ
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(c) pξ
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(d) pη
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Notes: These figures show the results of J = 500 experiments. In each experiment, we draw a set
of random model parameters, θ0 = (pϕ, pψ, pξ, pη, σξ, µξ, σϕ, σψ, ση, µϕ, ρ), inside the bounds shown
on the x-axes above. The model is estimated by minimizing the objective in eq. (3.14) imposing
the bounds of the true parameters. The targeted moments are listed in sub-section 3.2. Each
plot is a scatter-plot with the true parameter value on the x-axis and the estimated value on the
y-axis. The 45-degree line thus represents the case where the estimated and true value coincide.
We solve the problem in eq. (3.14) using a numerical optimizer over (pϕ, pψ, pξ, pη, σξ, µξ) with
(σϕ, σψ, ση, µϕ, ρ) implied by Lemma 2. We first evaluate the objective function for M = 500
random guesses inside the pre-specified bounds and start the optimizer in the best guess. We next
evaluate the objective function for M = 500 new guesses calculated as a weighted average of the
previous guesses (weight = 0.01) and the true parameters (weight = 0.99) and again start the
optimizer in the best guess. The best result across the two converged optimizer runs is used (blue
squares and circles). The converged result starting from the random guess is also shown (green
dots).
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Figure 3.2: Test of identification of σϕ, σψ, σξ and ση.
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Notes: See Figure 3.1.
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Figure 3.3: Test of identification of µϕ, µξ, and ρ.
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(b) µξ
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(c) ρ
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Notes: See Figure 3.1.

In Figures 3.1--3.3, we plot the true parameters, θj0, against the estimated param-
eters, θ̂j. The parameters seem to be well-identified as almost no deviations from
the true parameters are observed as all estimations end up on the 45-degree line
(the blue squares and circles). When there are small deviations, the resulting values
of the objective functions are above 1e-8, while we know that the value at the true
minimum is exactly 0 (up to numerical precision). This indicates that full conver-
gence has not been achieved.4 The green dots show where the estimator ends up
when starting from the random guess. We see that it sometimes converges to points
away from the 45-degree line, but that these are local minima, as the estimations
starting closer to the true parameters have a lower objective value after the solver
converges.

4 We use a combination of Nelder-Mead and BFGS numerical optimizers. First, we iterate with a
Nelder-Mead optimizer for a maximum of 500 iterations. Second, we continue iterating with the
BFGS optimizer with a gradient tolerance of 1e-8.
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4 Application: Danish Monthly Income Data

In this section, we provide background information on the Danish administrative
data, explain the construction of the estimation sample, and present our empirical
results. We then discuss the performance of our model in fitting the data, and show
that our estimated income process is able to match key patterns in both monthly
and annual income data.

4.1 Sample selection

We use 8 years of Danish administrative data from January 2011 to December 2018.
All firms in Denmark have to report wages and hours for every employee to the
national tax agency. This information is reported monthly and is recorded in the
BFL register.5 The register contains unique identifiers for both the employees and
firms allowing us to link the data to other administrative data at Statistics Denmark.
We aggregate the data to monthly frequency (summing across multiple jobs) and
include all labor income before taxes.

As is common in the literature on income dynamics, we focus our analysis on prime-
age male workers with a strong attachment to the labor market. This is beneficial
in terms of making the sample more homogeneous, but it comes at a cost in terms
of a loss of representativeness. Specifically, we use males from the birth cohorts
1956-1978 in the age span 35-60 ensuring at least 6 years of longitudinal data. We
further require that individuals are always in the annual income register, are never
self-employed, and never retire in our sample period. We define self-employed as
individuals having more than 20,000 DKK in annual profits from own firms. Finally,
we remove individuals who at any point in the sample period have an annual labor
income above 3 million DKK6, earn more than 500,000 DKK in a single month,
or who are not full-time-employed in at least half of the months in which they
are observed. We define an individual to be full-time employed in a given month
if his reported hours are above 95 percent of the standard full-time measure of
160.33 hours, and simultaneously have labor income in excess of 10,000 DKK. An
individual is denoted unemployed if his monthly income is missing or less than
1,000 DKK. Details of the sample selection process are described in Table B.1 in

5 The data has also been used by Kreiner et al. (2014) and Kreiner et al. (2016) to study intertem-
poral shifting of income before and after a tax reform. We exclude the years 2008-2010 to avoid
our estimates to be too affected by the financial crisis.

6 In the sample period, the USD-DKK exchange rate has fluctuated in the range 5-7.
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the Online Supplemental Material. We end up with a sample of about 400,000 male
workers who are observed for around 93 months on average. About 90 percent of the
observations are full-time employed, and 2.7 percent are unemployed. We calculate
growth rates as log-differences for all employed observations. To maintain the large
share of zero-growth observations, which are key to our analysis of the frequency
of income shocks, we do not perform initial regressions to remove potential effects
of individual characteristics. We winsorize observations at the 0.1th and 99.9th
percentiles to avoid potential problems with outliers. We keep unemployment spells
with zero income in the data and augment the baseline model with an unemployment
process, when we evaluate the model fit of annual income growth in Section 4.5. To
reduce the influence of seasonality, we only use data for February, March, and August
through November when calculating 1-month growth rates.

4.2 Data overview

Figure 4.1a shows the average monthly labor income (conditional on employment)
for each cohort and year. We observe a standard life-cycle profile for labor income
with initially high growth gradually slowing down.
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Figure 4.1: Data overview.
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(b) 1-month growth rates by month
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(c) 12-month growth rates by month
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(d) Growth rates by horizon
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(e) Growth rates by age
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(f) Growth rates by lagged growth
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Notes: This figure shows descriptive statistics calculated on monthly income data. Panel (a):
Average monthly labor income. Each line represents a birth cohort. Panel (b)–(f): Observations
are pooled across birth cohorts and years, and plotted on a symmetric log-scale such that 100 is 1
percent, 101 is 10 percent, etc.

Figure 4.1b shows the pooled distribution of 1-month growth rates on symmetric
log-scale in percent (i.e. 100 is 1 percent, 101 is 10 percent, etc.). We see that in
most calendar months more than half of the observations are very close to zero,
and while February-March and August-November seem very similar, the remaining
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months are highly affected by seasonal fluctuations.7

Figure 4.1c shows that the seasonality in 12-month growth is very limited, and that
a substantial share of the 12-month changes is also very close to zero. Figure 4.1d
illustrates that the zero changes disappear as the horizon is increased. Figure 4.1e
shows that conditioning on age mostly affects the right-hand side of the distribution,
whereas the left-hand side of the distribution remains largely unaffected. Figure
4.1f shows that the left-tail of the distribution collapses when conditioning on the
lagged growth rate being numerically small. This indicates that most of the negative
changes observed in the data are linked to previous positive changes.

4.3 Estimation results

We estimate the model parameters, θ = (pϕ, pψ, pξ, pη, σξ, µξ, σϕ, σψ, ση, µϕ, ρ), of
the monthly income process in eq. (2.1) using the generalized method of moments
(GMM) as

θ̂ = arg min
θ

[h(θ) − hdata]′W [h(θ) − hdata] (4.1)

where h(θ) is the vector of theoretical model moments calculated given θ, hdata are
the same moments calculated in the data, and W is a symmetric positive semi-
definite weighting matrix. We use the same moments as specified in Section 3.2. We
use a diagonal weighting matrix with the inverse of bootstrapped variances of each
moment on the diagonal.8

The results are shown in Table 4.1. We estimate all of the shocks to be highly
infrequent suggesting that this is a crucial extension of the canonical permanent-
transitory income process when fitting high-frequency income data. The estimates
of the fully specified model are shown in the first column. The permanent shock,
ϕt, arrives with a probability of 15 percent and has a positive mean of 0.012 and a
standard deviation of 0.015. In contrast, the persistent shock, ψt, arrives much more
infrequently with a probability of just below 1 percent, and has a larger standard
deviation of 0.20. An estimate of ρ = 0 implies that the arrival of a new shock wipes
out the history of past shocks. In between the arrival of shocks, however, recall

7 See also Appendix Figures B.1c and B.1d.
8 We solve the problem in eq. (4.1) numerically using a multi-start algorithm. We run the esti-

mation algorithm 50 times, where each time we first draw 500 random parameter combinations,
and then start a Nelder-Mead optimizer from the parameters associated with the lowest value
of the objective function. Using the result of the Nelder-Mead optimizer, we start a BFGS opti-
mizer to get the final results of each estimation. The estimates reported are from the estimation
associated with the lowest value of the objective function.
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that the persistent component exhibits an autocorrelation of ϱ = 1. Taken together,
this implies that the persistent component is still highly correlated over time even
when ρ is arbitrarily close to zero. The mean-zero transitory shock, ηt, arrives with a
probability of about 7 percent and has an enormous standard deviation of 0.65. The
other transitory shock, ξt, has positive a mean of 0.085 and arrives more regularly
with a probability of 0.21, but a lower standard deviation of 0.12.

The parameters are all very precisely estimated. The only parameter with a sub-
stantial standard deviation is the parameter ρ that governs the dependence of the
persistent income component on the history of past shocks. In practice, this pa-
rameter is hard to estimate precisely because of the extremely infrequent arrival of
the ψt shock. To investigate the effect of ρ, we show estimation results when we
fix ρ = 0.99 and ρ = 0.50 in the second and third columns, respectively. While
the other parameter estimates remain largely unchanged, the value of the objective
function increases . Below, we show that this reduction in fit stems primarily from
the auto-covariances which these restricted models cannot fit. The infrequency of
the shock, however, implies that ρ is hard to identify even in our long panel data.

In column four we remove the persistent shock completely (ψt = 0) to investigate if
the very low arrival probability suggests that the persistent process is not important
to fit the data. The very large increase in the value of the objective function suggests
that the persistent shock is absolutely central to include in the process to be able
to match both the auto-covariances and the growth-rate distributions in the data.
Finally, in column five we instead remove the non-zero mean transitory shock (ξt =
0) which also leads to a substantial increase in the value of the objective function.
Both of these experiments show that these two components are necessary to fit the
data well.
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Table 4.1: Estimation results.
Estimates

Parameters baseline ρ = 0.99 ρ = 0.5 ψt = 0 ξt = 0

Prob. of permanent shock pϕ 0.146 0.146 0.146 0.159 0.158
(0.000) (0.000) (0.000) (0.000) (0.000)

Prob. of persistent shock pψ 0.008 0.009 0.009 0.000† 0.003
(0.000) (0.000) (0.000) (0.000)

Prob. of mean-zero transitory shock pη 0.071 0.072 0.072 0.091 0.237
(0.000) (0.000) (0.000) (0.000) (0.000)

Prob. of transitory shock pξ 0.206 0.204 0.205 0.165 0.000†
(0.000) (0.000) (0.000) (0.000)

Std. of permanent shock σϕ 0.015 0.015 0.015 0.024 0.019
(0.000) (0.000) (0.000) (0.000) (0.000)

Std. of persistent shock σψ 0.198 0.253 0.231 0.000† 0.424
(0.002) (0.001) (0.000) (0.007)

Std. of mean-zero transitory shock ση 0.646 0.643 0.645 0.583 0.281
(0.001) (0.001) (0.001) (0.000) (0.000)

Std. of transitory shock σξ 0.122 0.123 0.122 0.141 0.000†
(0.000) (0.000) (0.000) (0.000)

Persistence ρ 0.000 0.990† 0.500† 0.000† 0.000
(0.022) (0.038)

Mean of permanent shock µϕ 0.012 0.012 0.012 0.011 0.011
(0.000) (0.000) (0.000) (0.000) (0.000)

Mean of transitory shock µξ 0.085 0.086 0.086 0.162 0.000†
(0.000) (0.000) (0.000) (0.000)

Objective function 1.3499 1.3628 1.3553 4.8707 4.4132

Notes: This table shows the estimation results. The upper part of the table shows the parameter estimates.
The lower part of the table shows the resulting value of the objective function calculated as in eq. (4.1).
See the text for details on the chosen moments and weighting matrix. In the data, we calculate each
moment separately by age and birth cohort, and target the average across birth cohorts and age in the
estimation. We winsorize the data used in the calculation of moments at the 0.1th and 99.9th percentiles
to dampen the effect of outliers on our estimates. The standard errors are computed using a variance-
covariance matrix calculated using 500 bootstraps.
† fixed parameter
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4.4 Fit

Next we investigate the performance of the model in fitting the monthly income data.
Figure 4.2 shows the model fit for the mean, variance, and kurtosis of 12k-month
growth rates for k ∈ {1, . . . , 6}. The fit of the mean is good for all specifications at
all horizons. The variance and kurtosis profiles are fitted well for both the baseline
specification and when varying the auto-correlation parameter, ρ. However, when
removing the persistent component (ψt = 0) the variance for high values of k is
too low, while the kurtosis profile starts too low and remains flat. When removing
the non-zero mean transitory shock (ξt = 0) both the variance and kurtosis are
consistently too small.

Figure 4.2: Fit: Mean, variance, and kurtosis of 12k-month growth rates.
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(b) Variance
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(c) Kurtosis
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Notes: This figure compares the moments implied by the estimated parameters and the moments
in the data. The estimated parameters are shown in Table 4.1. To avoid potential problems with
outliers, we winsorize income growth rates at the 0.1th and 99.9th percentiles. The solid black line
shows the data moments targeted in the estimation. The black dotted line shows the unwinsorized
data moments.

Figure 4.3 shows the model fit for the auto-covariances of 12-month growth rates.
Overall we achieve a reasonably good fit, with the exception that most specifications

25



imply a slightly larger first-order auto-covariance and slightly lower higher-order
auto-covariances compared to the data. The baseline specification has the best
fit. It is thus clear that including these moments in the estimation will result in
a small estimate of ρ. Note that the baseline model implies negative higher-order
auto-covariances even though ρ = 0 because the shock is infrequent.9

Figure 4.3: Fit: Auto-covariances of 12k-month growth rates.

(a) k = 1: Full auto-covariance.
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(b) k = 1: ℓ > 1.
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Figure 4.4 shows the model fit for the fractional auto-covariances of 12-month growth
rates. Except for the specification without an infrequent transitory shock, the es-
timated income process generates slightly lower fractional auto-covariances for low
levels of ℓ and slightly larger values for higher values of ℓ compared to the data.
Again the baseline specification provides the best fit among all specifications.

9 We have also experimented with allowing ρ to be negative. This improves the fit of auto-
covariances slightly leading to a reduction in the value of the objective function. In terms of
economic theory, it is however unclear how a negative ρ should be interpreted. We have thus
restricted attention to ρ ≥ 0 in the main analysis.
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Figure 4.4: Fit: Fractional auto-covariances of 12k-month growth rates.
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Figure 4.5 shows the model fit for the unconditional CDF of 1-month, 12-month,
24-month, and 108-month income growth rates. The fit is remarkably good in the
baseline specification. Fixing ρ to 1.0 or 0.5 does not change the fit significantly.
In contrast, abstracting from infrequent persistent income shocks, ψt, or infrequent
transitory income shocks, ξt, leads to a considerably worse fit of the distribution
of income growth rates at shorter and longer horizons. This clearly shows why we
cannot remove the persistent process completely although the arrival probability is
estimated to be quite low. Importantly, the model fits the significant mass-point
at zero for 1-month growth rates and the gradual dispersion of the distribution for
longer growth rates. This unequivocally demonstrates that allowing for infrequent
shocks is absolutely key to match high-frequency income dynamics.
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Figure 4.5: Fit: Distributions of income growth rates.
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(c) k = 24
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(d) k = 72
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Notes: See Figure 4.2. This figure shows the unconditional distribution of k-month growth rates.

Figure 4.6 shows the CDF of 1-month and 12-month income growth rates conditional
on lagged income growth being numerically smaller than one percent. Again, the
baseline specification provides a very good fit. However, for both the 1-month and
12-month growth rates the CDF is too flat for small positive growth rates. For the
12-month growth rate, the proportions of exact zero are a bit too small in the baseline
specification. This could indicate that the shocks are not fully i.i.d. Shutting off
either the persistent or transitory components worsens the fit significantly.
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Figure 4.6: Fit: Conditional distributions of k-month growth rates.

(a) k = 1

10
2

10
1

10
0 0 10

0
10

1
10

2

100 1yt

0.0

0.2

0.4

0.6

0.8

1.0

cd
f c

on
d.

 o
n 

|
1y

t
1|

0.
01

data
baseline

= 0.99

= 0.5
t = 0
t = 0

(b) k = 12
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Notes: See Figure 4.2. The figure shows the distribution of 1-month and 12-month growth
rates conditional on the lagged income growth rate being numerically small, i.e. ∆12kyt−12k ∈
[−0.01, 0.01], k ∈ {1, 12}.

Figure 4.7 shows moments related to the level of log-income. As frequently observed
in annual data, there exists a certain tension between moments in growth rates
and level (see, e.g, Daly et al. (2022)). The baseline specification implies a too
low increase in the variance of log-income over time. This is improved when the
persistent shock is removed and the standard deviation of the permanent shock
is estimated to be slightly more frequent and has a standard deviation of 0.024
instead of 0.015. This is also the case when the transitory shock, ξt, is removed.
The changes in covariances of the income level are, however, best matched in the
baseline specification.

Figure 4.7: Fit: Variance and covariances of log-income.
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(b) Cov[yt, yt+12+12k] − Cov[yt+12, yt]
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4.5 Fit: Aggregating to Annual Frequency

Here we aggregate the monthly income process to the annual frequency to illustrate
the estimated model fit on a lower frequency. For this purpose we extend the model
to one of the monthly income level (and not the log hereof), allowing for unemploy-
ment shocks. Concretely, our specification for monthly income, Yt, in month t is
given by

Yt = (1 − πut ) exp(yt) (4.2)

πut |dt ∼ Bernoulli(pu(dt))

pu(dt) =

 1 − pe if dt = 0

pu|d(dt) else

where πut ∈ {0, 1} is an unemployment indicator, pe is the probability of remaining
employed if employed in the previous period and pu|d(dt) is the likelihood of remain-
ing unemployed conditional on the monthly unemployment duration, dt. The annual
income in year s is then

Y s =
12∑
t=1

Y(s−1)·12+t. (4.3)

Figure 4.8 shows the estimated conditional probability function, pu|d(dt), using the
Danish data. The likelihood of remaining unemployed is increasing and concave in
the unemployment duration and flattens at around 88 percent after 9 months of
unemployment. We thus assume that the conditional unemployment probability is
constant after 12 months. For the employed, we estimate the monthly probability
of remaining employed to be pe = 0.994.

Figure 4.8: Unemployment probabilities, conditional on unemployment duration.
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Notes: This figure shows the empirical probabilities of remaining unemployed conditional on un-
employment duration, pu|d(d).
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Figure 4.9 shows moments of ∆kys ≡ ∆k log(Y s). Unlike the monthly income mo-
ments used in estimation above, these annual moments do not have closed form
expressions. We instead simulate the monthly income process based on (2.1) and
(4.2) and aggregate to the annual level. We initialize our simulations as draws from
the stationary distributions of pt and dt where the former is known in closed form
(see Lemma 1) and the latter distribution is based on initial simulations of the
unemployment process. We simulate 100,000 individuals for 30 years (360 months).

Figure 4.9: Fit: Mean, variance and kurtosis of annual growth rates.
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(b) Variance
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(c) Kurtosis
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Notes: This figure compares the annual moments implied by the estimated parameters and the
moments in the data. The estimated parameters are shown in Table 4.1 and Figure 4.8. Model-
based moments are based on simulations from the extended model with and without unemployment.

The annual fit is quite good. The estimated income process matches the average
annual income growth rate well even without the unemployment shock. The discrep-
ancy between empirical and simulated annual moments reflects the small discrep-
ancies in the monthly moments discussed above. While the baseline model without
unemployment matches the increase in the variance of annual income growth as the
horizon, k, increases, the unemployment shock is needed to match the level of the
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variance of annual income growth. The kurtosis of annual income growth is way
too low if unemployment shocks are not included, but also reasonably close to the
empirical kurtosis, if the unemployment shock is included. This stark difference
between what drives kurtosis at the monthly and the annual level cautions against
an estimation that relies on annual data alone.

Figure 4.10: Fit: Autocovariances of annual growth rates.
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Notes: See Figure 4.9.

Figure 4.10 shows the model fit for the auto-covariances of annual growth rates.
Again, the model with unemployement shocks fit the annual data quite well. Figure
B.2 in the Online Supplemental Material shows the CDF of k-year annual income
growth rates. The model replicates the overall shape of the distribution, but is more
symmetric than the empirical distribution.

Lastly, we explore to what extent our income process can fit the persistence in annual
income. Importantly, we allow the persistence to depend on both lagged income, and
the sign and magnitude of the realized shock. This generalized notion of persistence
has been recently emphasized by Arellano et al. (2017) as an important feature of
the income process. In their framework, income follows a general first-order Markov
process. Let Q (τ |ȳs−1 ) denote the τ -th conditional quantile of income ȳs ≡ log Ȳs
given ȳs−1, for each τ ∈ (0, 1). The generalized notion of persistence is then captured
by a derivative effect,

ρ̄(τ, ȳs−1) = ∂Q (τ |ȳs−1 )
∂ȳs−1

, (4.4)

which measures the persistence of income ȳs−1 when it is hit by a shock of rank
τ. Empirically, we obtain these measures of persistence from coefficients of quantile
autoregressions (Koenker and Xiao (2006)), where we use an equidistant grid of 11
quantiles and flexibly parametrize the quantile functions as fourth-degree Hermite
polynomials. We then estimate quantile autoregressions separately for the simulated
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and actual income data. Figure 4.11 plots the level of persistence as a function of
the percentile of the shock and the percentile of past income for both the simulated
and actual income data.

Figure 4.11: Fit: Nonlinear persistence.
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Notes: This figure shows the persistence of (log-)income in simulated and actual income data,
depending on the quantile of previous income and the quantile of the shock received in the current
period. The measures of persistence are calculated from coefficients of quantile autoregressions,
using an equidistant grid of 11 quantiles and parametrizing the quantile functions as fourth-degree
Hermite polynomials.

Figure 4.11 suggests that our estimated income process, aggregated to annual fre-
quency, is able to match the empirical patterns of nonlinear persistence very well.
Remarkably similar patterns of nonlinear persistence have been shown to be present
in Norwegian administrative data and the PSID (see, e.g., Arellano et al. (2017) and
De Nardi et al. (2020)).

5 Conclusions

In this paper, we have analyzed and estimated a generalization of the canoni-
cal permanent-transitory income model allowing for infrequent and non-zero mean
shocks. We provide analytical formulas for the unconditional and conditional dis-
tributions of income growth rates and higher-order moments. We prove a set of
identification results and numerically validate that we can simultaneously identify
the frequency, variance, and persistence of income shocks.
Using our theoretically motivated monthly income moments, we estimate the pro-
posed model using 8 years of Danish monthly income data. The results show that
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income shocks are highly infrequent, and that this is central for explaining the
non-Gaussian elements of the data. Consumption-saving models with idiosyncratic
income risk should thus pay attention not just to the volatility and persistence of
shocks, but also to their frequency.

Extending the analysis in this paper with heterogeneity across types and dynamics
over the life-cycle, up and down the job ladder, and in and out of employment is an
interesting avenue for future work. Such an extended model is likely to match the
observed negative skewness of income growth.
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A Proofs

This appendix provides proofs for the theoretical results presented in the main text.
In sub-section A.1, we state some results regarding mixture distributions used ex-
tensively in the proofs. In sub-section A.2, we state some auxiliary lemmas used in
the proofs.

A.1 Mixtures

Remark 1 states a number of general results regarding mixtures.

Remark 1. Let P be a stochastic variable with possible values {1, . . . ,m} and cor-
responding probabilities, pi. Let X1, X2,. . . , Xm be stochastic variables with finite
first and second moment, then

µX ≡ E[XP ] =
m∑
i=1

piµiX (A.1)

ΞX ≡ E[(XP − µX)2] = −µ2
X +

m∑
i=1

pi(ΞiX + µ2
iX), (A.2)

where

µiX ≡ E[Xi]

ΞiX ≡ E[(Xi − µi)2].

Further, let Y1, Y2, . . . , Ym be another set of stochastic variables with finite first and
second moment, then

Cov[XP , YP ] = −µXµY +
m∑
i=1

pi(Cov[Xi, Yi] + µiXµiY ). (A.3)

Remark 2 states a general result regarding the skewness and kurtosis of a Gaussian
mixture.

Remark 2. Let P be a stochastic variable with possible values {1, . . . ,m} and cor-
responding probabilities, pi. Let X1, X2,. . . , Xm be stochastic variables drawn from
Gaussian distributions, then using the same notation as in remark 1 we have
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Skew[XP ] = 1
Ξ

3
2
X

m∑
i=1

pi(µiX − µX)(3ΞiX + (µiX − µX)2) (A.4)

Kurt[XP ] = 1
Ξ2
X

m∑
i=1

pi(3Ξ2
iX + 6(µiX − µX)2ΞiX + (µiX − µX)4). (A.5)

A.2 Auxiliary lemmas

Lemma 4 provides a formula for the mean and variance of a mean-zero infrequent
shock.

Lemma 4. If X ∼ Bernoulli(p) and Y is an independent stochastic variable with
mean µ and variance Ξ, then

E[XY ] = pµ

Var[XY ] = pΞ + p(1 − p)µ2.

Proof. We directly have

E[XY ] = p · E[1 · Y ] + (1 − p) · E[0 · Y ] = pµ

E[Y 2] = Var[Y ] + E[Y ]2 = Ξ + µ2

E[(XY )2] = p · E[(1 · Y )2] + (1 − p) · 0 · E[(0 · Y )2]

= p(Ξ + µ2).

Using that Var[Z] = E[Z2] − E[Z]2 for any stochastic variable Z, we further have

Var[XY ] = E[(XY )2] − E[XY ]2

= p(Ξ + µ2) − p2µ2

= pΞ + pµ2 − p2µ2

= pΞ + p(1 − p)µ2.

Lemma 5 provides a formula for a geometric sum with binomial weights.

Lemma 5. If X ∼ Binomial(n, p) with probability mass function fB(k|n, p) and
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ρ ∈ R, then

∀n ∈ N : F (n) ≡
n∑
k=0

fB(k|n, p)ρk = (1 − p(1 − ρ))n. (A.6)

Proof. Let Y ∼ Bernouilli(p). An equivalent formulation of F (n) then is

F (n) =
1∑

h=0
Pr[Y = h]ρh

n−1∑
k=0

fB(k|n− 1, p)ρk. (A.7)

This implies the following recursive formula for F (n),

F (n) =
1∑

h=0
ph(1 − p)1−hρhF (n− 1)

= pρF (n− 1) + (1 − p)F (n− 1)

= (1 − p(1 − ρ))F (n− 1).

From F (1) = pρ1 + (1 − ρ)ρ0 = 1 − p(1 − ρ) the result follows by induction.

Lemma 6 provides a formula for the mean squared number of successes of a binomial
distributed variable.

Lemma 6. If X ∼ Binomial(n, p) with probability mass function fB(k|n, p), then

∀n ∈ N : F (n) ≡
n∑
k=0

fB(k|n, p)k2 = np(1 − p) + (np)2. (A.8)

Proof. Note that F (n) = E[X2]. Using the standard result for the mean and variance
of a binomial variable, we have

E[X2] − E[X]2 = np(1 − p) ⇔

E[X2] = np(1 − p) + (pn)2.

A.3 Proof of Lemma 1

The probability of a persistent shock arriving in any period is pψ independently
of what happens in any other period, and the sum of probabilities from period 1
to infinity, ∑∞

t=1 pψ, thus clearly diverges. By the second Borel-Cantelli lemma the
number of arrived shocks therefore converges to infinity for t → ∞. Consequently,
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using the formulation in eq. (2.3), we have

lim
t→∞

pt = lim
k→∞

ρkp0 + lim
k→∞

k−1∑
s=0

ρsψs

=
∞∑
s=0

ρsψs. (A.9)

From this, it directly follows using our mean-zero and independence assumptions
that

E[pt] =
∞∑
s=0

ρsE[ψj] = 0 (A.10)

Var[pt] =
∞∑
s=0

Var[ρsψj] =
∞∑
s=0

ρ2sσ2
ψ =

σ2
ψ

1 − ρ2 . (A.11)

A.4 Proof of Theorem 1

Using the formulation in eq. (2.4) and our mean-zero assumptions, we have

E[∆kyt|nψ, nϕ,mξ0,mξ1,mη0,mη1] = E[∆kpt|nψ] + E[∆kzt|nϕ] + E[πξt ξt|mξ1] − E[πξt−1ξt−1|mξ0]

+ E[πηt ηt|mη1] − E[πηt ηt−k|mη0] + E[ϵt] − E[ϵt−k]

= (ρnψ − 1)2E[pt−k] +
nψ−1∑
s=0

ρsE[ψs]

+
nϕ−1∑
s=0

E[ϕs] +mη1µη −mη0µη

= nϕµϕ + (mη1 −mη0)µη, (A.12)

where we have used that E[pt−k] = 0 by lemma 1.

Using the formulation in eq. (2.4) and our independence assumptions, we have

Var[∆kpt|nψ] = (ρnψ − 1)2Var[pt−k] +
nψ−1∑
s=0

ρ2sVar[ψs]

= (ρnψ − 1)2 σ2
ψ

1 − ρ2 + 1 − ρ2nψ

1 − ρ2 σ2
ψ

= 21 − ρnψ

1 − ρ2 σ
2
ψ, (A.13)

where we have used that Var[pt−k] = σ2
ψ

1−ρ2 by lemma 1.
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Var[∆kzt|nϕ] =
nϕ−1∑
s=0

Var[ϕs] = nϕσ
2
ϕ

Using the formulation in eq. (2.5), we directly have Var[∆kzt|nϕ] = 0, and thus
Cov[∆kpt,∆kzt|nψ, nϕ] = 0.

Using eq. (2.6) and our independence assumptions, we arrive at the result

Var[∆kyt|nψ, nϕ,mξ0,mξ1,mη0,mη1] = Var[∆kpt|nψ] + Var[∆kzt|nϕ]

+Var[πξt ξt|mξ1] + Var[πξt−kξt−k|mξ0]

+Var[πηt ηt|mξ1]+Var[πηt ηt|mξ0]

+Var[ϵt] + Var[ϵt−k]

= 21 − ρnψ

1 − ρ2 σ
2
ψ + nϕσ

2
ϕ + (mξ0 +mξ1)σ2

ξ

+(mη0 +mη1)σ2
η + 2σ2

ϵ . (A.14)

A.5 Proof of Theorem 2

By our assumptions, we have

∆kyt = ∆kpt + ∆kzt +mξ2ξt −mξ1ξt−k +mη2ηt −mη1ηt−k + ϵt − ϵt−k

∆kpt = ρnψ1pt−k − pt−k +
nψ1−1∑
s=0

ρsψs,n1

= (ρnψ1 − 1)ρn0ψpt−2k + (ρnψ1 − 1)
n0ψ−1∑
s=0

ρsψs,n0 +
nψ1−1∑
s=0

ρsψs,n1

∆kzt =
nϕ1−1∑
s=0

ϕs,n1 ,

and

∆kyt−k = ∆kpt−k + ∆kzt−k +mξ1ξt−k −mξ0ξt−2k +mη1ηt−k −mη0ηt−2k + ϵt−k − ϵt−2k

∆kpt−k = (ρn0ψ − 1)pt−2k +
n0ψ−1∑
s=0

ρsψs,n0

∆kzt−k =
n0ϕ−1∑
s=0

ϕs,n0 .

This implies
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Cov[∆kpt,∆kpt−k|n0, n1] = (ρnψ1 − 1)ρn0ψ(ρn0ψ − 1)Var[pt−2k]

+(ρnψ1 − 1)
n0ψ−1∑
s=0

ρ2sσ2
ψ

= (ρnψ1 − 1)ρn0ψ(ρn0ψ − 1)
σ2
ψ

1 − ρ2

+(ρnψ1 − 1)1 − ρ2n0ψ

1 − ρ2 σ2
ψ

= (ρnψ1 − 1)ρ
2n0ψ − ρn0ψ + 1 − ρ2n0ψ

1 − ρ2 σ2
ψ

= (ρn1ψ − 1)(1 − ρn0ψ)
1 − ρ2 σ2

ψ.

Noting

Cov[∆kpt,∆kzt−k|n0ψ, nψ1, n0ϕ, nϕ1] = Cov[∆kpt−k,∆kzt|n0ψ, nψ1, n0ϕ, nϕ1]

= 0,

and using our independence assumptions, we arrive at the result

Cov[∆yt,∆kyt−k|n0ψ, nψ1, n0ϕ, n0ϕ,mξ1,mη1] = Cov(∆kpt,∆kpt−k)

−(mξ1σ
2
ξ +mη1σ

2
η + σ2

ϵ )

= (ρnψ1 − 1)(1 − ρn0ψ)
1 − ρ2 σ2

ψ

−(mξ1σ
2
ξ +mη1σ

2
η + σ2

ϵ ).
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A.6 Proof of Corollary 1

A.6.1 Mean

Theorem 1 and remark 1 imply the result

E[∆kyt] =
∑
s∈S

ωsE[∆kyt|nψ, nϕ,mξ0,mξ1,mη0,mη1]

=
∑
s∈S

ωsnϕµϕ

= µϕ
∑
s∈S

ωsnϕ

= µϕ
k∑

nϕ=0
fB(nϕ|k, pϕ)nϕ

= µϕkpϕ

A.6.2 Variance

Theorem 1 and remark 1 imply

Var[∆kpt] = −E[∆kpt]2 +
∑
s∈S

ωs [Var[∆kpt|nψ,mξ0,mξ1] + E[∆kpt|nψ,mξ0,mξ1]]2

=
∑
s∈S

ωsVar[∆kpt|nψ]

=
k∑

nϕ=0
fB(nψ|k, pψ)

(
21 − ρnψ

1 − ρ2 σ
2
ψ

)

=
2σ2

ψ

1 − ρ2

 k∑
nψ=0

fB(nψ|k, pψ)(1 − ρnψ)


=
2σ2

ψ

1 − ρ2

1 −
k∑

nψ=0
fB(nψ|k, pψ)ρnψ


=

2σ2
ψ

1 − ρ2 (1 − ρ̃k),

where we have used lemma 5.
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Similarly, we have

Var[∆kzt] = −E[∆kzt]2 +
∑
s∈S

ωs(Var[∆kzt|nϕ,mξ0,mξ1] + E[∆kzt|nϕ,mξ0,mξ1])2

= −(kpϕµϕ)2 +
∑
s∈S

ωs(nϕσ2
ϕ + (nϕµϕ))2

= −(kpϕµϕ)2 + kpϕσ
2
ϕ + (kpϕ(1 − pϕ) + (kpϕ)2)µ2

ϕ

= kpϕ(1 − pϕ)µ2
ϕ + kpϕσ

2
ϕ

= k(µ̃2
ϕ + pϕσ

2
ϕ)

where we have used lemma (6), and

Cov[∆kpt,∆kzt] = −E[∆kzt]E[∆kpt] +
∑
s∈S

ωs[Cov[∆kpt,∆kzt|nψ, nϕ] + E[∆kzt|nϕ]E[∆kpt|nψ]]

= 0

Using lemma (4), we have

Var[πξt ξt] = pξσ
2
ξ + pξ(1 − pξ)µ2

ξ

Var[πηt ηt] = pησ
2
η + pη(1 − pη)µ2

η = pησ
2
η

Combining the above results and using our independence assumptions, this implies
the result

Var[∆kyt] = Var[∆kpt] + Var[∆kzt] + Var[πξt ξt − πξt−kξt−k]

+Var[πtηt − πηt−kηt−k] + Var[ϵt − ϵt−k]

=
2σ2

ψ

1 − ρ2 (1 − ρ̃k) − (kpϕµϕ)2 + (kpϕ(1 − pϕ) + (kpϕ)2)(σ2
ϕ + µϕ)2

+2(pξσ2
ξ + pξ(1 − pξ)ξ + pησ

2
η + σ2

ϵ )

=
2σ2

ψ

1 − ρ2 (1 − ρ̃k) + k(µ̃2
ϕ + pϕσ

2
ϕ)

+2(pξσ2
ξ + µ̃2

ξ + pησ
2
η + σ2

ϵ )
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A.7 Proof of Corollary 2

A.7.1 Autocovariance

By our assumptions, we have

∆kpt−ℓk = (ρaψ − 1)pt−(ℓ+1)k +
aψ−1∑
s=0

ρsψs,aψ

pt−k − pt−ℓk = (ρbψ − 1)pt−ℓk +
bψ−1∑
s=0

ρsψs,bψ

∆kpt = (ρcψ − 1)pt−k +
cψ−1∑
s=0

ρsψs,cψ

= (ρcψ − 1)
ρaψ+bψpt−(ℓ+1)k + ρbψ

aψ−1∑
s=0

ρsψs,aψ +
bψ−1∑
s=0

ρsψs,bψ

+
cψ−1∑
s=0

ρsψs,cψ

aψ, cψ ∼ Binomial(k, pψ)

bψ ∼ Binomial((ℓ− 1)k, pψ).

This implies

Cov[∆kpt,∆kpt−ℓk|aψ, bψ, cψ] = (ρaψ − 1)(ρcψ − 1)ρaψ+bψVar[pt−(ℓ+1)k]

+(ρcψ − 1)ρbψ
aψ−1∑
s=0

ρ2sσ2
ψ

= ((ρaψ − 1)(ρcψ − 1)ρaψ+bψ + (ρcψ − 1)ρbψ(1 − ρ2aψ))
σ2
ψ

1 − ρ2

= −(1 − ρcψ)(1 − ρaψ)ρbψ
σ2
ψ

1 − ρ2 ,

where we have used that Var[pt−(ℓ+1)k] = σ2
ψ

1−ρ2 by lemma 1.
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Using remark 1 and lemma 5, we now have

Cov[∆kpt,∆kpt−ℓk] =
k∑

aψ=0
fB(aψ|k, pψ)

(ℓ−1)k∑
bψ=0

fB(bψ|(ℓ− 1)k, pψ)
k∑

cψ=0
fB(cψ|k, pψ)

(
−(1 − ρcψ)(1 − ρaψ)ρbψ

σ2
ψ

1 − ρ2

)

= −
σ2
ψ

1 − ρ2

 k∑
aψ=0

fB(aψ|k, pψ)(1 − ρcψ)


(ℓ−1)k∑
bψ=0

fB(bψ|(ℓ− 1)k, pψ)ρbψ
 k∑

aψ=0
fB(cψ|k, pψ)(1 − ρaψ)


= −

σ2
ψ

1 − ρ2 (1 − (1 − pψ(1 − ρ))k)2(1 − pψ(1 − ρ))(ℓ−1)k.

Using remark 1, we also have

Cov[∆kzt,∆kzt−ℓk] = −E[∆kzt]E[∆kzt−k]

+
k∑

aϕ=0
fB(aϕ|k, pϕ)

(ℓ−1)k∑
bϕ=0

fB(bϕ|(ℓ− 1)k, pϕ)
k∑

cϕ=0
fB(cϕ|k, pϕ)(aϕµϕ)(cϕµϕ)

= −(kpϕµϕ)2 +
 k∑
aϕ=0

fB(aϕ|k, pϕ)aϕ

 k∑
cϕ=0

fB(cϕ|k, pϕ)cϕ

µ2
ϕ

= 0.

Combining the above results and using our independence assumptions, this implies
the result

Cov[∆kyt,∆kyt−ℓk] = Cov[∆kpt,∆kpt−ℓk] + Cov[πξt−kξt−k, π
ξ
t−ℓkξt−ℓk]

+Cov[πηt−kηt−k, π
η
t−ℓkηt−ℓk] + Cov[ϵt−k, ϵt−ℓk]

= Cov[∆kpt,∆kpt−ℓk] −

pξσ
2
ξ + µ̃2

ξ + pησ
2
η + µ̃2

η + σ2
ϵ if ℓ = 1

0 if ℓ ∈ {2, 3, . . . }.

A.7.2 Fractional covariance

Using the same argumentation as when formulating eq. (2.4), we have
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∆kpt−ℓ = (ρaψ+bψ − 1)pt−ℓ−k + ρbψ
aψ−1∑
s=0

ρsψs,aψ +
bψ−1∑
s=0

ρsψs,bψ

∆kzt−ℓ =
aϕ−1∑
s=0

ϕs,aϕ +
bϕ−1∑
s=0

ϕs,bϕ

∆kpt = (ρbψ+cψ − 1)pt−k + ρcψ
bψ−1∑
s=0

ρsψs,bψ +
cψ−1∑
s=0

ρsψs,cψ

= (ρbψ+cψ − 1)
ρaψpt−ℓ−k +

aψ−1∑
s=0

ρsψs,aψ

+ ρcψ
bψ−1∑
s=0

ρsψs,bψ +
cψ−1∑
s=0

ρsψs,cψ

∆kzt =
bϕ−1∑
s=0

ϕs,bϕ +
cϕ−1∑
s=0

ϕs,cϕ

ai, ci ∼ Binomial(ℓ, pi) i ∈ {ψ, ϕ}

bi ∼ Binomial(k − ℓ, pi) i ∈ {ψ, ϕ}

This implies

Cov[∆kpt,∆kpt−ℓ|aψ, bψ, cψ] = (ρaψ+bψ − 1)(ρbψ+cψ − 1)ρaψVar[pt−ℓ−k]

+(ρbψ+cψ − 1)ρbψ
aψ−1∑
s=0

ρ2sσ2
ψ

+ρcψ
bψ−1∑
s=0

ρ2sσ2
ψ

= [(ρaψ+bψ − 1)(ρbψ+cψ − 1)ρaψ + (ρbψ+cψ − 1)ρbψ(1 − ρ2aψ)

+ρcψ(1 − ρ2bψ)] ·
σ2
ψ

1 − ρ2

=
[
ρaψ − ρbψ + ρcψ − ρaψ+bψ+cψ

] σ2
ψ

1 − ρ2 .

where we have used that Var[pt−ℓ−k] = σ2
ψ

1−ρ2 by lemma 1.
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Using remark 1 and lemma 5, we now have

Cov[∆kpt,∆kpt−ℓk] =
ℓ∑

aψ=0
fB(aψ|ℓ, pψ)

k−ℓ∑
bψ=0

fB(bψ|k − ℓ, pψ)
ℓ∑

cψ=0
fB(cψ|k, pψ)

(
ρaψ − ρbψ + ρcψ − ρaψ+bψ+cψ

) σ2
ψ

1 − ρ2

=
[
2 (1 − pψ(1 − ρ))ℓ

− (1 − pψ(1 − ρ))k−ℓ

− (1 − pψ(1 − ρ))2ℓ (1 − pψ(1 − ρ))k−ℓ
]

σ2
ψ

1 − ρ2

= (2ρ̃ℓ − ρ̃k−ℓ − ρ̃ℓ+k)
σ2
ψ

1 − ρ2

Using remark 1, we also have

Cov[∆kzt,∆kzt−ℓ] = −E[∆kzt]E[∆kzt−k]

+
ℓ∑

aϕ=0
fB(aϕ|ℓ, pϕ)

k−ℓ∑
bϕ=0

fB(bϕ|k − ℓ, pϕ)
ℓ∑

cϕ=0
fB(cϕ|k, pϕ)

[
bσ2

ϕ

+(aϕ + bϕ)(bϕ + cϕ)µ2
ϕ

]
= −(kpϕµϕ)2

+µ2
ϕ

k−ℓ∑
bϕ=0

fB(bϕ|k − ℓ, pϕ)b2
ϕ + σ2

ϕ

k−ℓ∑
bϕ=0

fB(bϕ|k − ℓ, pϕ)bϕ

+µ2
ϕ

 ℓ∑
aϕ=0

fB(aϕ|ℓ, pϕ)aϕ

 k−ℓ∑
bϕ=0

fB(bϕ|k − ℓ, pϕ)bϕ


+µ2

ϕ

 ℓ∑
aϕ=0

fB(aϕ|ℓ, pϕ)aϕ

 ℓ∑
cϕ=0

fB(cϕ|k, pϕ)cϕ


+µ2

ϕ

 k−ℓ∑
bϕ=0

fB(bϕ|k − ℓ, pϕ)bϕ

 ℓ∑
cϕ=0

fB(cϕ|k, pϕ)cϕ


= −(kpϕµϕ)2 + σ2

ϕpϕ(ℓ− k) + µ2
ϕ(pϕ(1 − pϕ)(ℓ− k)

+p2
ϕ(ℓ− k)2 + p2

ϕ2ℓ(k − ℓ) + p2
ϕℓ

2)

= −(kpϕµϕ)2 + σ2
ϕpϕ(ℓ− k) + µ2

ϕ(pϕ(1 − pϕ)(ℓ− k) + (kpϕ)2)

= (k − ℓ)µ̃2
ϕ + σ2

ϕpϕ(ℓ− k)

Combining the above results and using our independence assumptions, this yields
the result
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Cov[∆kyt,∆kyt−ℓ] = (2ρ̃ℓ − ρ̃k−ℓ − ρ̃ℓ+k)
σ2
ψ

1 − ρ2 + (k − ℓ)µ̃2
ϕ + σ2

ϕpϕ(ℓ− k).

A.8 Proof of Corollary 3

When ψt, ξt, ηt, ϕt, and ϵt are all Gaussian then, using the notation of Theorem
1, ∆kyt|nψ, nϕ,mξ0,mξ1,mη0,mη1 is a linear combination of Gaussian variables and
therefore also a Gaussian variable. The mean and variance of ∆kyt|nψ, nϕ,mξ0,mξ1,mη0,mη1

are given in Theorem 1. Then using remark 2 gives the result.

A.9 Proof of Corollary 4

Variance. The variance of the transitory shocks are the same in period t and t+k

by assumption. In turn, using that all shocks are independent together with Lemma
4, we have that

Var[yt+k] − Var[yt] = Var[zt+k] − Var[zt] + Var[pt+k] − Var[pt]

= Var[zt +
k∑
j=1

πϕt+jϕt+j] − Var[zt] + ∆kVar[pt+k]

=
k∑
j=1

Var[πϕt+jϕt+j] + ∆kVar[pt+k]

= k(σ2
ϕ + pϕ(1 − pϕ)µ2

ϕ + ∆kVar[pt+k]

From Theorem 1 we have that limt→∞ ∆kVar[pt+k] = 0 and the difference in income-
level variances converges to

k(σ2
ϕ + pϕ(1 − pϕ)µ2

ϕ.

Covariance There is no covariance of the transitory shocks by assumption, and
the co-variance of the permanent component is independent of the span given a
common starting point, i.e. Cov[zt, zt+k] = Cov[zt, zt+k+ℓ]. Using that all shocks are
assumed to be independent, it follows using Lemma 5 and Lemma 1 that
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Cov[yt, yt+k+ℓ] − Cov[yt, yt+k] = Cov[pt, pt+k+ℓ] − Cov[pt, pt+k]

=
k+ℓ∑
nψ=0

fB(nψ|k + ℓ, pψ)Cov[ρnψpt +
nψ∑
s=1

ρsψs, pt]

−
k∑

nψ=0
fB(nψ|k, pψ)Cov[ρnψpt +

nψ∑
s=1

ρsψs, pt]

= (1 − pψ(1 − ρ))k+ℓ σ2
ψ

1 − ρ2 − (1 − pψ(1 − ρ))k
σ2
ψ

1 − ρ2

=
[
(1 − pψ(1 − ρ))k+ℓ − (1 − pψ(1 − ρ))k

] σ2
ψ

1 − ρ2

A.10 Proof of Corollary 5

When ψt, ξt, ηt,ϕt, and ϵt are all Gaussian then, using the notation of Theorem
1, ∆kyt|nψ, nϕ,mξ0,mξ1,mη0,mη1 is a linear combination of Gaussian variables and
therefore also a Gaussian variable. The mean and variance of ∆kyt|nψ, nϕ,mξ0,mξ1,mη0,mη1

are given in Theorem 1. We then have

Pr[∆kyt < x|nψ, nϕ,mξ0,mξ1,mη0,mη1] = Φ
(
x− µs√

Ξs

)

Consequently

Pr[∆kyt < x] =
∑
s∈S

ωsPr[∆kyt < x|nψ, nϕ,mξ0,mξ1,mη0,mη1]

=
∑
s∈S

ωsΦ
(
x− µs√

Ξs

)

A.11 Proof of Corollary 6

When ψt, ξt, ηt, ϕt, and ϵt are all Gaussian then, using the notation of Theorem 2,
∆kyt|nψ1, nψ2nϕ1, nϕ2,mξ0,mξ1,mξ2,mη0,mη1,mη2 and
∆kyt−k|nψ1, nψ2nϕ1, nϕ2,mξ0,mξ1,mξ2,mη0,mη1,mη2 are both linear combinations of
Gaussian variables and therefore jointly Gaussian. The covariances matrix is implied
by Theorem 2. We then have

Pr[∆kyt < x1 ∧ ∆kyt−k < x2|nψ1, nψ2nϕ1, nϕ2,mξ0,mξ1,mξ2,mη0,mη1,mη2]

= Φ2

(
x1 − µ1s√

Ξ1s
,
x2 − µ2s√

Ξ2s
,

Cs√
Ξ1s

√
Ξ2s

)
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Consequently

Pr[∆kyt < x1 ∧ ∆kyt−k < x2] =
∑
s∈S

ωsPr[∆kyt < x1 ∧ ∆kyt−k < x2|

nψ1, nψ2nϕ1, nϕ2,mξ0,mξ1,mξ2,mη0,mη1,mη2]

=
∑
s∈S

ωsΦ
(
x1 − µ1s√

Ξ1s
,
x2 − µ2s√

Ξ2s
,

Cs√
Ξ1s

√
Ξ2s

)
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B Additional tables and figures

Table B.1: Sample Selection.
Individuals Observations

0. Initial sample 894,828 83,351,112
1. Always in income register 868,884 80,948,028
2. Never self-employed 725,852 67,582,788
3. Never retired 639,479 59,579,988
4. Annual wage never above 3 mil. DKK 636,899 59,336,580
5. Monthly wage never above 500,000 DKK 628,664 58,560,420
6. Full-time employed 50 percent of the time 438,494 40,878,804
Notes: Anyone with more than 20,000 DKK in annual non-labor business income is

defined as self-employed. Anyone with income from private or public pensions is defined
as retired. We define an individual to be full-time employed if his reported hours are
above 95 percent of the standard full-time measure of 160.33 hours, and simultaneously
have monthly labor income in excess of 10,000 DKK. An individual is unemployed if
his monthly income is missing or less than 1,000 DKK. Monetary selection cut-offs
are adjusted relative to 2019 using the change in disposable income of Danish men in
the age range 35–59 based on the series INDKP106 from Statistics Denmark. In the
sample period, the USD-DKK exchange rate has fluctuated in the range 5-7.
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Figure B.1: Additional data figures
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(b) Variance of log-income
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(c) Share of 1-month growth rates ≤ 1-percent
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(d) Share of 1-month growth rates ≤ 5-percent
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(e) Time-profile of 12-month growth rate
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(f) Time-profile of 1-month growth rate
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Notes: Panels (a)–(b) show the age profiles of the mean and variance of monthly log-income.
Panels (c)–(d) show the age profiles of the share of observations with absolute monthly income
growth below 1 and 5 percent, split by month. Black dots are averages over February–March and
August–November. Panels (e)–(f) show the average 12 and 1-month growth rates over the sample
period. All measures are pooled across cohorts.
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Figure B.2: Fit: Distributions of k-year annual income growth rates.
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(b) k = 2
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(c) k = 3
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(d) k = 4
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Notes: See Figure 4.9. This figure shows the unconditional distribution of k-year annual growth
rates.
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