High Frequency Income Dynamics*

Jeppe Druedahl ${ }^{\dagger}$
Michael Graber ${ }^{\ddagger}$
Thomas H. Jørgensen ${ }^{\S}$

November 24, 2023

Abstract

We generalize the canonical permanent-transitory income process to allow for infrequent shocks. The distribution of income growth rates can then have a discrete mass point at zero and fat tails as observed in income data. We provide analytical formulas for the unconditional and conditional distributions of income growth rates and higher-order moments. We prove a set of identification results and numerically validate that we can simultaneously identify the frequency, variance, and persistence of income shocks. We estimate the income process on monthly panel data of 400,000 Danish males observed over 8 years. When allowing shocks to be infrequent, the proposed income process can closely match the central features of both monthly and annual income data.

JEL Codes: C33, D31, J30
Keywords: Consumption-saving, income dynamics, panel data models
Replication package: GitHub

[^0]
1 Introduction

To understand the consumption-saving decision households make, we must understand the nature of income risk they face. The benchmark permanent-transitory income process was consequently developed by Lillard and Willis (1978) and MaCurdy (1982), and recently a burgeoning literature has focused on allowing for higher-order risk and non-linear dynamics (see e.g. Arellano et al., 2017; De Nardi et al., 2020, 2021; Guvenen et al., 2021, 2022; Busch et al., 2022; Busch and Ludwig, 2022). However, this research has primarily used income processes with an annual frequency and estimations of annual income data.
In this paper, we extend the canonical permanent-transitory income process to a monthly frequency and introduce infrequent shocks. Figure 1.1, which presents income data from Denmark, shows this is empirically relevant as approximately half of all households experience zero month-to-month income growth. From a theoretical standpoint, the frequency of income shocks is also important. When consumers face many frequent income shocks they need low-return liquid assets to smooth their consumption. If consumers instead face larger, but more infrequent shocks, they are more willing to hold a large share of high-return illiquid assets and be wealthy hand-to-mouth consumers (Kaplan and Violante, 2014; Larkin, 2023). Heterogeneity in access to liquidity across households then leads to substantial heterogeneity in the marginal propensity to consume (MPC) out of temporary income changes, which matters for the distribution of aggregate shocks (see e.g. Kaplan et al., 2018; Kaplan and Violante, 2018; Auclert et al., 2018, 2020).

We provide analytical formulas for how the frequency of shocks affect central moments of income growth rates, such as their variance, co-variance, and kurtosis. We use this to show that once the arrival probabilities of the infrequent persistent and transitory shocks are pinned down, the remaining parameters controlling the persistence and volatility of shocks are identified using standard moment conditions (as in e.g. Hryshko, 2012). In some specific cases, the arrival probabilities of shocks are furthermore identified in closed-form from, e.g., the share of observations with zero income growth between months. These theoretical results provide new insights into the drivers of higher order income risk.

In the general specification, the arrival probabilities are, however, not identified in closed-form. In a numerical exercise, we instead validate that they are simultaneously identified with all the other parameters by a set of standard mean, variance, and co-variances moments combined with information on the kurtosis, and the unconditional and conditional distribution of income growth rates. Additionally, we

Figure 1.1: The fit of the estimated income process.

Notes: This figure shows the fit of the proposed incomes process estimated on monthly Danish register data. The income process is introduced in Section 2, and the data and estimation results are presented in detail in Section 4.
show that we are also able to identify the variance and non-zero mean of transitory shocks, such as bonuses. Finally, our analytical formulas allow us to estimate our model without simulating it, which computationally is orders of magnitude faster.

A key challenge in estimating income risk at high frequency is that most panel data on income, whether based on surveys or administrative tax records, are available only at annual frequency, sometimes even lower. We exploit a unique source of panel data containing monthly income records for every employee in Denmark from January 2011 to December 2018. The key advantage of this dataset is the accuracy of the income information provided, the large sample size, and the monthly frequency at which income is recorded. In our empirical application, we investigate the dynamics of monthly earnings for more than 400,000 Danish men with a strong attachment to the labor market.

The key finding is that shocks to monthly earnings are rather infrequent, with estimated arrival probabilities of less than 30 percent across all specifications. The estimated model fits the main features of the data reasonably well. In Figure 1.1 we plot the model-implied distributions of 1- and 12-month income growth rates together with their empirical counterparts. Importantly, we closely match the sizable mass-point at zero for monthly income growth rates and the gradual dispersion of the distribution of longer horizon growth rates. Aggregating our estimated monthly income process also fits key annual moments in the data when we allow for movements in and out of employment, as we illustrate in Section 4.5.

Our paper is related to the already mentioned literature on income process estimation. Meghir and Pistaferri (2011) provides an extensive review of the early
literature. We differ from, and add to, this literature by focusing on monthly income dynamics. Scandinavian register data for annual income have previously been used to estimate income processes by e.g. Browning and Ejrnæs (2013), Blundell et al. (2015), and Druedahl and Munk-Nielsen (2018), Busch et al. (2022). Empirical evidence for non-linearity and higher order risk is also provided in Halvorsen et al. (2022a), Halvorsen et al. (2022b), Friedrich et al. (2022) and Leth-Petersen and Sæverud (2022).

Klein and Telyukova (2013) discuss estimation of high frequency income processes using only auto-covariances of log-income from annual data. They show that the frequency of shocks is not identified using their proposed moments. Kaplan et al. (2018) rely on higher-order moments of annual income growth rates to infer high frequency earnings dynamics. Eika (2018) discusses identification of the variance of transitory and permanent shocks using auto-covariances of growth rates when all households receive a single shock at a random point in time during the year. He shows that a bias arises in the transitory shock variance because a permanent shock midway through year t induces a positive co-variance between the growth rate from $t-1$ to t and the growth rate from t to $t+1$. Crawley (2020), Crawley et al. (2022) and Crawley and Kuchler (2023) also discuss time aggregation problems. We avoid such problems by estimating the income process directly at the frequency at which the wage is paid out, i.e. monthly. Based on the evidence we provide, Crawley et al. (2022) argue for introducing "passing shocks", where income first jumps and then return to the old level with a fixed hazard rate.

In order to keep the focus on high-frequency dynamics we disregard some lowfrequency dynamics previously considered in the literature in relation to the lifecycle and job shifts. This also implies we do not attempt to match the skewness of income growth as this would require multiple permanent shocks, similar to a job ladder model. Likewise we don't allow for heterogeneity in the arrival rates and the variance of shocks. Extensions in these direction are interesting, but make it a lot more complicated to derive the analytical results we rely on for estimation. These extensions are therefore left to future work.

The paper proceeds as follows. Section 3 presents our proposed monthly income process and derives central analytical properties. Section 3 discusses identification issues. Section 4 presents the Danish register data and the empirical results. Section 5 concludes. Appendix A contains the proofs, and Appendix B presents additional tables and figures.

2 Monthly income process

We propose to model monthly income fluctuations using a simple generalization of the canonical persistent-transitory income process extended with infrequent persistent and transitory shocks. Our infinite horizon specification for log-income, y_{t}, in month t is given by

$$
\begin{align*}
& y_{t}= z_{t}+p_{t}+\pi_{t}^{\xi} \xi_{t}+\pi_{t}^{\eta} \eta_{t}+\epsilon_{t} \tag{2.1}\\
& z_{t}= z_{t-1}+\pi_{t}^{\phi} \phi_{t} \\
& p_{t}= \varrho_{t} p_{t-1}+\pi_{t}^{\psi} \psi_{t} \\
& \varrho_{t}= 1-\pi_{t}^{\psi}(1-\rho), \rho \in[0,1] \\
& \pi_{t}^{x} \sim \operatorname{Bernoulli}\left(p_{x}\right), x \in\{\phi, \eta, \psi, \xi\} \\
& \mathbb{E}\left[x_{t}\right]= 0, x \in\{\psi, \eta\} \\
& \mathbb{E}\left[x_{t}\right]= \mu_{x}, x \in\{\phi, \xi\} \\
& \operatorname{Var}\left[x_{t}\right]= \sigma_{x}^{2}, x \in\{\psi, \phi, \eta, \xi, \epsilon\} \\
& \phi_{t}, \psi_{t}, \eta_{t}, \xi_{t}, \pi_{t}^{\phi}, \pi_{t}^{\psi}, \pi_{t}^{\eta}, \pi_{t}^{\xi}, \epsilon_{t} \text { are serially uncorrelated and i.i.d. }
\end{align*}
$$

The income process has five components:

1. A permanent component, z_{t}, where a shock arrives with a probability of p_{ϕ}. The shock has a variance of σ_{ϕ}^{2} and a mean of μ_{ϕ}. We assume this and the following shocks to be infrequent to allow for excess probability mass at $\Delta y_{t}=$ 0 (something we document to be very frequent in the data).
2. A persistent component, p_{t}, modeled as an $\mathrm{AR}(1)$ process, which is constant until a shock arrives with a probability of p_{ψ}. The shock has a variance of σ_{ψ}^{2} and a mean of zero. Previous shocks depreciate with a rate of ρ. This specification allows for excess probability mass at $\Delta y_{t}=0$ even if $\rho<1$. This would not be the case if we included a more "standard" $\mathrm{AR}(1)$ process, and the data thus strongly rejects such a specification.
3. A transitory component, η_{t}, where a shock arrives with a probability of p_{η}. The shock has a variance of σ_{η}^{2} and a mean of zero.
4. A transitory component, ξ_{t}, where a shock arrives with a probability of p_{ξ}. The shock has a variance of σ_{ξ}^{2} and a mean of μ_{ξ}.
5. An ever-present transitory shock (e.g. measurement error) with a variance of σ_{ϵ}^{2} and a mean of zero. While this shock eliminates the excess probability mass
at $\Delta y_{t}=0$ and is therefore empirically not relevant, we include it for the sake of completeness in our theoretical results.

We analyze the model in the time limit, where the effect of the initial values for the persistent component, p_{t}, has died out.
The income process in eq. (2.1) nests the canonical persistent-transitory income process by setting $\sigma_{\phi}^{2}=\sigma_{\xi}^{2}=\sigma_{\epsilon}^{2}=\mu_{\phi}=\mu_{\xi}=0$ and $p_{\psi}=p_{\eta}=1$ such that

$$
\begin{aligned}
& y_{t}=p_{t}+\eta_{t} \\
& p_{t}=\rho p_{t-1}+\psi_{t} .
\end{aligned}
$$

In the rest of this section, we derive several analytical properties of the income process in eq. (2.1). These results allow us to estimate the model without simulating it and form the basis for the identification results in Section 3.

2.1 Alternative formulation

In order to simplify the analysis of the model, it is beneficial to note that our assumption of constant variances of the permanent and persistent shocks implies that it is only the number of shocks and not their timing which matters. Our assumption of no serial correlation further implies that the number of shocks in a given time interval is binomially distributed. Consequently, an alternative, but equivalent, formulation of the permanent and persistent components are,

$$
\begin{align*}
z_{t} & =z_{0}+\sum_{s=0}^{n_{\phi}-1} \phi_{s} \tag{2.2}\\
p_{t} & =\rho^{n_{\psi}} p_{0}+\sum_{s=0}^{n_{\psi}-1} \rho^{s} \psi_{s} \tag{2.3}\\
n_{x} & \sim \operatorname{Binomial}\left(t, p_{x}\right), x \in\{\phi, \psi\},
\end{align*}
$$

where n_{x} is the number of arrived shocks of type x up to and including period t, and ψ_{s} and ϕ_{s} (with a slight abuse of notation) now refer to the s^{\prime} 'th shock of each type (rather than the shock in period s). For later, denote the probability mass function of the binomial distribution by $f_{B}(n \mid q, p)$ for a success probability of p and q trials. Similarly, the k-month growth rate of the permanent component, $\Delta_{k} z_{t}=z_{t}-z_{t-k}$,
and the persistent component, $\Delta_{k} p_{t}=p_{t}-p_{t-k}$, can be formulated equivalently as

$$
\begin{align*}
\Delta_{k} z_{t} & =\sum_{s=0}^{n_{\phi}-1} \phi_{s} \tag{2.4}\\
\Delta_{k} p_{t} & =\left(\rho^{n_{\psi}}-1\right) p_{t-k}+\sum_{s=0}^{n_{\psi}-1} \rho^{s} \psi_{s} \tag{2.5}\\
n_{x} & \sim \operatorname{Binomial}\left(k, p_{x}\right), x \in\{\psi, \phi\} .
\end{align*}
$$

2.2 Stationary distribution

Lemma 1 shows that the limiting stationary distribution of the persistent component, p_{t}, is unaffected by the frequency of shocks. For instance, if all shocks are Gaussian, the distribution of the persistent component is also Gaussian.

Lemma 1. If $\rho \in[0,1)$, the limiting distribution of the persistent component, p_{t}, exists and is independent of the arrival probabilities. In particular, the mean and variance are

$$
\begin{aligned}
\mathbb{E}\left[\lim _{t \rightarrow \infty} p_{t}\right] & =0 \\
\operatorname{Var}\left[\lim _{t \rightarrow \infty} p_{t}\right] & =\frac{\sigma_{\psi}^{2}}{1-\rho^{2}} .
\end{aligned}
$$

Proof. See Online Supplemental Material A.

2.3 Conditional moments

Theorem 1 provides an expression for the mean and variance of the k-period growth rate of income,

$$
\begin{equation*}
\Delta_{k} y_{t}=\Delta_{k} z_{t}+\Delta_{k} p_{t}+\pi_{t}^{\eta} \eta_{t}-\pi_{t-k}^{\eta} \eta_{t-k}+\pi_{t}^{\xi} \xi_{t}-\pi_{t-k}^{\xi} \xi_{t-k}+\epsilon_{t}-\epsilon_{t-k}, \tag{2.6}
\end{equation*}
$$

conditional on the number of arrived persistent and transitory shocks, and uses this to model $\Delta_{k} y_{t}$ as a mixture distribution. The mean is increasing in the mean of the permanent shock and can either be affected positively or negatively by the transitory shock with a non-zero mean depending on when it arrives. The variance increases with the number of both transitory and persistent shocks.

Theorem 1. Let n_{ϕ}, n_{ψ} denote the number of permanent/persistent shocks of type ϕ and ψ arrived in the time interval $[t-k+1, t]$. Let $m_{\eta 0}, m_{\eta 1} \in\{0,1\}$ and $m_{\xi 0}, m_{\xi 1} \in\{0,1\}$ denote whether there was a transitory shock of respectively type η
and ξ in period $t-k$ and period t. Conditional on $n_{\phi}, n_{\psi}, m_{\eta 0}, m_{\eta 1}, m_{\xi 0}$, and $m_{\xi 1}$, the mean and variance of the k-month growth rate are

$$
\begin{align*}
\mathbb{E}\left[\Delta_{k} y_{t} \mid n_{\phi}, n_{\psi}, m_{\eta 0}, m_{\eta 1}, m_{\xi 0}, m_{\xi 1}\right]= & n_{\phi} \mu_{\phi}+\left(m_{\xi 1}-m_{\xi 0}\right) \mu_{\xi} \tag{2.7}\\
\operatorname{Var}\left[\Delta_{k} y_{t} \mid n_{\phi}, n_{\psi}, m_{\eta 0}, m_{\eta 1}, m_{\xi 0}, m_{\xi 1}\right]= & 2 \sigma_{\psi}^{2} \frac{1-\rho^{\psi}}{1-\rho^{2}}+n_{\phi} \sigma_{\phi}^{2} \\
& +\left(m_{\xi 0}+m_{\xi 1}\right) \sigma_{\xi}^{2} \\
& +\left(m_{\eta 0}+m_{\eta 1}\right) \sigma_{\eta}^{2}+2 \sigma_{\epsilon}^{2} \tag{2.8}
\end{align*}
$$

The distribution of $\Delta_{k} y_{t}$ is a mixture distribution. The set of components is

$$
\begin{equation*}
s=\left(n_{\phi}, n_{\psi}, m_{\eta 0}, m_{\eta 1}, m_{\xi 0}, m_{\xi 1}\right) \in \mathbb{S}=\{0, \ldots, k\}^{2} \times\{0,1\}^{4} \tag{2.9}
\end{equation*}
$$

where $\mu_{s} \equiv \mathbb{E}\left[\Delta_{k} y_{t} \mid s\right]$ and $\Xi_{s} \equiv \operatorname{Var}\left[\Delta_{k} y_{t} \mid s\right]$ are the mean and variance of the s'th component, and the mixture weights are given by

$$
\begin{equation*}
\omega_{s}=f_{B}\left(n_{\phi} \mid k, p_{\phi}\right) f_{B}\left(n_{\psi} \mid k, p_{\psi}\right) f_{B}\left(m_{\eta 0} \mid 1, p_{\eta}\right) f_{B}\left(m_{\eta 1} \mid 1, p_{\eta}\right) f_{B}\left(m_{\xi 0} \mid 1, p_{\xi}\right) f_{B}\left(m_{\xi 1} \mid 1, p_{\xi}\right) . \tag{2.10}
\end{equation*}
$$

Proof. See Online Supplemental Material A.
Theorem 2 extends the result above to the auto-covariance of income growth conditional on the number of arrived persistent and transitory shocks and uses this to model the joint distribution of $\left(\Delta_{k} y_{t}, \Delta_{k} y_{t-k}\right)$ as a mixture distribution.

Theorem 2. Let $n_{\phi 0}, n_{\phi 1}, n_{\psi 0}, n_{\psi 1}$, denote the number of permanent/persistent shocks of type ϕ and ψ arrived in the time intervals $[t-2 k+1, t-k]$ and $[t-k+1, t]$. Let $m_{\eta 0}, m_{\eta 1}, m_{\eta^{2}} \in\{0,1\}$ and $m_{\xi 0}, m_{\xi 1}, m_{\xi 2} \in\{0,1\}$ denote whether there was a transitory shock of respectively type η and ξ in period $t-2 k, t-k$ and t. Conditional on $n_{\phi 0}, n_{\phi 1}, n_{\psi 0}, n_{\psi 1}, m_{\eta 0}, m_{\eta 1}, m_{\eta 2}, m_{\xi 0}, m_{\xi 1}, m_{\xi 2}$ the auto-covariance of k-month income growth is

$$
\begin{align*}
\operatorname{Cov}\left[\Delta_{k} y_{t}, \Delta_{k} y_{t-k} \mid n_{\psi 0}, n_{\psi 1}, m_{\xi 1}, m_{\eta 1}\right]= & \frac{\left(\rho^{n_{1 \psi}}-1\right)\left(1-\rho^{n_{0} \psi}\right)}{1-\rho^{2}} \sigma_{\psi}^{2} \\
& -\left(m_{\xi 1} \sigma_{\xi}^{2}+m_{\eta 1} \sigma_{\eta}^{2}+\sigma_{\epsilon}^{2}\right) \tag{2.11}
\end{align*}
$$

and the means and variances can be calculated as in Lemma 1.
The joint distribution of $\left(\Delta_{k} y_{t}, \Delta_{k} y_{t-k}\right)$ is a mixture distribution. The set of com-
ponents is

$$
\begin{align*}
s & =\left(n_{\phi 0}, n_{\phi 1}, n_{\psi 0}, n_{\psi 1}, m_{\eta 0}, m_{\eta 1}, m_{\eta 2}, m_{\xi 0}, m_{\xi 1}, m_{\xi 2}\right) \\
& \in \mathbb{S}=\{0, \ldots, k\}^{4} \times\{0,1\}^{6}, \tag{2.12}
\end{align*}
$$

where the mean and covariance matrix of the s'th component are

$$
\begin{align*}
& \mu_{s}=\left(\mu_{1 s}, \mu_{2 s}\right) \tag{2.13}\\
& \Xi_{s}=\left[\begin{array}{cc}
\Xi_{1 s} & \mathbb{C}_{s} \\
\mathbb{C}_{s} & \Xi_{2 s}
\end{array}\right] \tag{2.14}
\end{align*}
$$

where

$$
\begin{aligned}
\mu_{1 s} & \equiv \mathbb{E}\left[\Delta_{k} y_{t-k} \mid n_{\phi 0}, n_{\psi 0}, m_{\eta 0}, m_{\eta 1}, m_{\xi 0}, m_{\xi 1}\right] \\
\Xi_{1 s} & \equiv \operatorname{Var}\left[\Delta_{k} y_{t-k} \mid n_{\phi 0}, n_{\psi 0}, m_{\eta 0}, m_{\eta 1}, m_{\xi 0}, m_{\xi 1}\right] \\
\mu_{2 s} & \equiv \mathbb{E}\left[\Delta_{k} y_{t} \mid n_{\phi 1}, n_{1 \psi}, m_{\eta 1}, m_{\eta 2}, m_{\xi 1}, m_{\xi 2}\right] \\
\Xi_{2 s} & \equiv \operatorname{Var}\left[\Delta_{k} y_{t} \mid n_{\phi 1}, n_{\psi 1}, m_{\eta 1}, m_{\eta 2}, m_{\xi 1}, m_{\xi 2}\right] \\
\mathbb{C}_{s} & \equiv \operatorname{Cov}\left[\Delta_{k} y_{t}, \Delta_{k} y_{t-k} \mid n_{\psi 0}, n_{\psi 1}, m_{\xi 1}, m_{\eta 1}\right]
\end{aligned}
$$

and the mixture weights are given by

$$
\begin{aligned}
\omega_{s}= & \left(\prod_{i \in\{0,1\}} f_{B}\left(n_{\phi i} \mid k, p_{\phi}\right)\right)\left(\prod_{i \in\{0,1\}} f_{B}\left(n_{\psi i} \mid k, p_{\psi}\right)\right) \\
& \left(\prod_{i \in\{0,1,2\}} f_{B}\left(m_{\eta i} \mid 1, p_{\eta}\right)\right)\left(\prod_{i \in\{0,1,2\}} f_{B}\left(m_{\xi i} \mid 1, p_{\xi}\right)\right) .
\end{aligned}
$$

Proof. See Online Supplemental Material A.

2.4 Moments

Corollary 1 derives expressions for the mean and variance of k-month growth.
Corollary 1. The mean and variance of k-month income growth are

$$
\begin{align*}
\mathbb{E}\left[\Delta_{k} y_{t}\right]= & k p_{\phi} \mu_{\phi} \tag{2.15}\\
\operatorname{Var}\left[\Delta_{k} y_{t}\right]= & 2 \bar{\sigma}_{\psi}^{2}\left(1-\tilde{\rho}_{k}\right)+k\left(\tilde{\mu}_{\phi}^{2}+p_{\phi} \sigma_{\phi}^{2}\right) \\
& +2\left(p_{\xi} \sigma_{\xi}^{2}+\tilde{\mu}_{\xi}^{2}+p_{\eta} \sigma_{\eta}^{2}+\sigma_{\epsilon}^{2}\right) \tag{2.16}
\end{align*}
$$

where the adjusted persistence parameter is

$$
\begin{equation*}
\tilde{\rho}_{x} \equiv\left(1-p_{\psi}(1-\rho)\right)^{x}, \tag{2.17}
\end{equation*}
$$

the long-run variance component of the persistent shock is

$$
\begin{equation*}
\bar{\sigma}_{\psi}^{2} \equiv \frac{\sigma_{\psi}^{2}}{1-\rho^{2}}, \tag{2.18}
\end{equation*}
$$

and the adjusted means are

$$
\begin{align*}
\tilde{\mu}_{\phi}^{2} & \equiv p_{\phi}\left(1-p_{\phi}\right) \mu_{\phi}^{2} \tag{2.19}\\
\tilde{\mu}_{\xi}^{2} & \equiv p_{\xi}\left(1-p_{\eta}\right) \mu_{\xi}^{2} . \tag{2.20}
\end{align*}
$$

Proof. See Online Supplemental Material A.

Corollary 2 derives expressions for the auto-covariance and fractional auto-covariance of k-month growth rates.

Corollary 2. The auto-covariance and fractional auto-covariance of k-month income growth are

$$
\begin{align*}
\operatorname{Cov}\left[\Delta_{k} y_{t}, \Delta_{k} y_{t-k}\right]= & -\bar{\sigma}_{\psi}^{2}\left(1-\tilde{\rho}_{k}\right)^{2}-\left(p_{\xi} \sigma_{\xi}^{2}+\tilde{\mu}_{\xi}^{2}+p_{\eta} \sigma_{\eta}^{2}+\sigma_{\epsilon}^{2}\right) \tag{2.21}\\
\operatorname{Cov}\left[\Delta_{k} y_{t}, \Delta_{k} y_{t-\ell k}\right]= & -\bar{\sigma}_{\psi}^{2}\left(1-\tilde{\rho}_{k}\right)^{2} \tilde{\rho}_{k}^{(\ell-1) k}, \ell \in\{2,3 \ldots\} \tag{2.22}\\
\operatorname{Cov}\left[\Delta_{k} y_{t}, \Delta_{k} y_{t-\ell}\right]= & \bar{\sigma}_{\psi}^{2}\left(2 \tilde{\rho}_{\ell}-\tilde{\rho}_{k-\ell}-\tilde{\rho}_{k+\ell}\right) \tag{2.23}\\
& +\tilde{\mu}_{\phi}^{2}(k-\ell)+\sigma_{\phi}^{2} p_{\phi}(k-\ell) \\
& \text { for } \ell \in\{1,2, \ldots, k-1\} .
\end{align*}
$$

Proof. See Online Supplemental Material A.

Corollary 3 derives expressions for the skewness and kurtosis of k-month growth rates. We see that the model can only generate non-zero skewness if the mean of the permanent shock, μ_{ϕ}, is non-zero. From Corollary 1, we know that this mean must be positive to get positive average income growth. To fit negative skewness it would therefore be necessary to have multiple permanent shocks, similar to a job ladder model, which is beyond the scope of this paper.

Corollary 3. If $\psi_{t}, \xi_{t}, \eta_{t}, \phi_{t}$ and ϵ_{t} are all Gaussian, the skewness and excess
kurtosis of k-month income growth rates are

$$
\begin{align*}
& \operatorname{Skew}\left[\Delta_{k} y_{t}\right]=-3+\frac{1}{\Xi^{\frac{3}{2}}} \sum_{s \in \mathbb{S}} \omega_{s}\left(\mu_{s}-\mu\right)\left(3 \Xi_{s}+\left(\mu_{s}-\mu\right)^{2}\right) \tag{2.24}\\
& \operatorname{Kurt}\left[\Delta_{k} y_{t}\right]=\frac{1}{\Xi^{2}} \sum_{s \in \mathbb{S}} \omega_{s}\left(3 \Xi_{s}^{2}+6\left(\mu_{s}-\mu\right)^{2} \Xi_{s}+\left(\mu_{s}-\mu\right)^{4}\right), \tag{2.25}
\end{align*}
$$

where $\mu=\mathbb{E}\left[\Delta_{k} y_{t}\right]$ and $\Xi=\operatorname{Var}\left[\Delta_{k} y_{t}\right]$. If $\mu_{\phi}=0$ then $\operatorname{Skew}\left[\Delta_{k} y_{t}\right]=0$.
Proof. See Online Supplemental Material A.
Corollary 4 derives expressions for the changes in variances and co-variances of levels of income.

Corollary 4. The changes in variances and co-variances of levels of income are

$$
\begin{align*}
\operatorname{Var}\left[y_{t+k}\right]-\operatorname{Var}\left[y_{t}\right]= & k\left(p_{\phi} \sigma_{\phi}^{2}+\tilde{\mu}_{\phi}^{2}\right) \tag{2.26}\\
\operatorname{Cov}\left[y_{t}, y_{t+k+\ell}\right]-\operatorname{Cov}\left[y_{t+k}, y_{t}\right]= & {\left[\left(1-p_{\psi}(1-\rho)\right)^{k+\ell}-\left(1-p_{\psi}(1-\rho)\right)^{k}\right] 2 . } \\
& \times \frac{\sigma_{\psi}^{2}}{1-\rho^{2}}
\end{align*}
$$

Proof. See Online Supplemental Material A.

2.5 Distributions

Corollary 5 derives an expression for the full CDF of k-month income growth rates.
Corollary 5. If $\phi_{t}, \psi_{t}, \eta_{t}, \xi_{t}$, and ϵ_{t} are all Gaussian, then, using the same notation as in Theorem 1, the CDF of k-month growth rates is

$$
\begin{equation*}
\operatorname{Pr}\left[\Delta_{k} y_{t}<x\right]=\sum_{s \in \mathbb{S}} \omega_{s} \Phi\left(\frac{x-\mu_{s}}{\sqrt{\Xi_{s}}}\right) \tag{2.28}
\end{equation*}
$$

where $\Phi(x)$ is the standard Gaussian CDF.
Proof. See Online Supplemental Material A.
Corollary 6 derives an expression for the full bi-variate CDF of just-connected k month income growth rates.

Corollary 6. If $\phi_{t}, \psi_{t}, \eta_{t}, \xi_{t}$, and ϵ_{t} are all Gaussian, then, using the same notation as in Theorem 2, the bi-variate CDF of just-connected k-month income growth rates

$$
\begin{equation*}
\operatorname{Pr}\left[\Delta_{k} y_{t}<x_{1} \wedge \Delta_{k} y_{t-k}<x_{2}\right]=\sum_{s \in \mathbb{S}} \omega_{s} \Phi_{2}\left(\frac{x_{1}-\mu_{1 s}}{\sqrt{\Xi_{1 s}}}, \frac{x_{2}-\mu_{2 s}}{\sqrt{\Xi_{2 s}}}, \frac{\mathbb{C}_{s}}{\sqrt{\Xi_{1 s}} \sqrt{\Xi_{2 s}}}\right), \tag{2.29}
\end{equation*}
$$

where $\Phi_{2}\left(x_{1}, x_{2}, r\right)$ is the bi-variate Gaussian CDF with a correlation coefficient of r.

Proof. See Online Supplemental Material A.
There does not exist an analytical expression for the bi-variate CDF, so the expression in (2.29) is in principle only analytical up to the evaluation of $\Phi_{2}(\bullet)$.

3 Identification

In this section, we turn to identification of the empirically relevant 11 model parameters, ${ }^{1}$

$$
\theta=\left(p_{\phi}, p_{\psi}, p_{\xi}, p_{\eta}, \sigma_{\xi}, \mu_{\xi}, \sigma_{\phi}, \sigma_{\psi}, \sigma_{\eta}, \mu_{\phi}, \rho\right)
$$

In line with our later empirical analysis, we will mainly focus on 12 -month growth rates, which are more robust to introducing seasonality than e.g. 1-month growth rates. We first prove two informative closed-form conditional identification results. Secondly, we numerically verify a general identification conjecture based on the closed-form results.

3.1 Closed form results

Combining Corollary 1 and Corollary 2, we see that the shock variances and the persistence parameter affect the variances and covariances qualitatively in the same way as when all shocks are ever-present (see,e.g., Hryshko (2012) or Druedahl and Munk-Nielsen (2018)). Standard identification arguments are therefore valid for these parameters. This is formalized in Lemma 2.

Lemma 2. Given the arrival probabilities, $p_{\phi}, p_{\psi}, p_{\xi}$, and p_{η}, and the mean and variance of the non-zero-mean transitory shock, μ_{ξ} and σ_{ξ}^{2}, the persistence parameter, ρ, and the permanent, persistent, and transitory shock variances, $\sigma_{\phi}^{2}, \sigma_{\psi}^{2}$, and

[^1]σ_{ξ}^{2}, and the mean of the permanent shock, μ_{ϕ}, are identified by
\[

$$
\begin{align*}
\mu_{\phi} & =\frac{\mathbb{E}\left[\Delta_{12} y_{t}\right]}{12 p_{\phi}} \tag{3.1}\\
\rho & \left.=1-\frac{1-\left(\frac{\operatorname{Cov}\left[\Delta_{122} y_{t}, \Delta_{12} y_{t-3 \cdot 12]}\right]}{\operatorname{Cov}\left[\Delta_{12} y_{t}, \Delta_{12} y_{t-2 \cdot 22]}\right]}\right.}{p_{\psi}}\right)^{\frac{1}{12}} \tag{3.2}\\
\sigma_{\psi}^{2} & =\frac{\left(2\left(\operatorname{Var}\left[\Delta_{24} y_{t}\right]-\tilde{\mu}_{\phi 24}\right)-\sum_{k \in\{12,36\}}\left(\operatorname{Var}\left[\Delta_{k} y_{t}\right]-\tilde{\mu}_{\phi k}\right)\right)\left(1-\rho^{2}\right)}{2\left(\tilde{\rho}_{12}+\tilde{\rho}_{36}-2 \tilde{\rho}_{24}\right)} \tag{3.3}\\
\sigma_{\phi}^{2} & =\frac{\left(\operatorname{Var}\left[\Delta_{24} y_{t}\right]-\tilde{\mu}_{\phi 24}\right)-\left(\operatorname{Var}\left[\Delta_{12} y_{t}\right]-\tilde{\mu}_{\phi 12}\right)-\frac{2 \sigma_{\psi \psi}^{2}\left(\tilde{\rho}_{12}-\tilde{\rho}_{24}\right)}{1-\rho^{2}}}{12 p_{\phi}} \tag{3.4}\\
\sigma_{\eta}^{2} & =-\frac{\operatorname{Cov}\left[\Delta_{12} y_{t}, \Delta_{12} y_{t-12}\right]+\frac{\sigma_{\psi}^{2}\left(1-\tilde{\rho}_{12}\right)^{2}}{1-\rho^{2}}+p_{\xi} \sigma_{\xi}^{2}+\tilde{\mu}_{\xi}^{2}}{p_{\eta}} . \tag{3.5}
\end{align*}
$$
\]

Proof. Follows directly from Corollary 1-2.
If the non-zero-mean shocks have zero variance, i.e. $\sigma_{\phi}^{2}=\sigma_{\xi}^{2}=0$, identification of the arrival probabilities is straightforward. Lemma 3 shows that the arrival probabilities are identified from mass points in the distribution of income growth rates.

Lemma 3. If the non-zero-mean shocks have zero variance, $\sigma_{\phi}^{2}=\sigma_{\xi}^{2}=0$, the distribution of income growth rates has mass points given by

$$
\begin{align*}
\operatorname{Pr}\left[\Delta_{k} y_{t}=0\right]= & \left(1-p_{\psi}\right)^{k}\left(\left(1-p_{\xi}\right)^{2}+p_{\xi}^{2}\right) \tag{3.6}\\
& \times\left(1-p_{\phi}\right)^{k}\left(1-p_{\eta}\right)^{2} \\
\operatorname{Pr}\left[\Delta_{k} y_{t}=\mu_{\phi}\right]= & \left(1-p_{\psi}\right)^{k}\left(\left(1-p_{\xi}\right)^{2}+p_{\xi}^{2}\right) \tag{3.7}\\
& \times k p_{\phi}\left(1-p_{\phi}\right)^{k-1}\left(1-p_{\eta}\right)^{2} \\
\operatorname{Pr}\left[\Delta_{k} y_{t}=\mu_{\xi} \mid \Delta_{k} y_{t-k}=0\right]= & \left(1-p_{\psi}\right)^{k}\left(1-p_{\phi}\right)^{k} \tag{3.8}\\
& \times \frac{\left(1-p_{\eta}\right)}{p_{\xi}^{2}+\left(1-p_{\xi}\right)^{2}} p_{\xi}\left(1-p_{\xi}\right)^{2} \\
\operatorname{Pr}\left[\Delta_{k} y_{t}=-\mu_{\xi} \mid \Delta_{k} y_{t-k}=0\right]= & \left(1-p_{\psi}\right)^{k}\left(1-p_{\phi}\right)^{k} \tag{3.9}\\
& \times \frac{\left(1-p_{\eta}\right)}{p_{\xi}^{2}+\left(1-p_{\xi}\right)^{2}}\left(1-p_{\xi}\right) p_{\xi}^{2}
\end{align*}
$$

and the arrival probabilities, $p_{\phi}, p_{\psi}, p_{\xi}$ and p_{η}, are identified by

$$
\begin{align*}
p_{\phi} & =\frac{\operatorname{Pr}\left[\Delta_{12} y_{t}=\mu_{\phi}\right]}{\left(12 \operatorname{Pr}\left[\Delta_{12} y_{t}=0\right]+\operatorname{Pr}\left[\Delta_{12} y_{t}=\mu_{\phi}\right]\right)} \tag{3.10}\\
p_{\xi} & =\frac{\operatorname{Pr}\left[\Delta_{12} y_{t}=-\mu_{\xi} \mid \Delta_{12} y_{t-12}=0\right]}{\operatorname{Pr}\left[\Delta_{12} y_{t}=\mu_{\xi} \mid \Delta_{12} y_{t-12}=0\right]+\operatorname{Pr}\left[\Delta_{12} y_{t}=-\mu_{\xi} \mid \Delta_{12} y_{t-12}=0\right]} \tag{3.11}\\
p_{\psi} & =1-\frac{\left(\frac{\operatorname{Pr}\left[\Delta_{24} y_{t}=0\right]}{\operatorname{Pr}\left[\Delta_{12} y_{t}=0\right]}\right)^{\frac{1}{12}}}{1-p_{\phi}} \tag{3.12}\\
p_{\eta} & =1-\sqrt{\frac{\operatorname{Pr}\left[\Delta_{12} y_{t}=0\right]}{\left(1-p_{\psi}\right)^{12}\left(\left(1-p_{\xi}\right)^{2}+p_{\xi}^{2}\right)\left(1-p_{\phi}\right)^{12}}} . \tag{3.13}
\end{align*}
$$

Proof. Follows directly from the arrival of a shock being Bernoulli distributed.

3.2 Numerical identification test

When the non-zero-mean shocks have non-zero variances, $\sigma_{\phi}^{2}, \sigma_{\xi}^{2}>0$, the arrival probabilities can no longer be estimated by the knife-edge conditions in Lemma 3 because the exact mass points disappear. There will, however, still be identifying information in the probability mass of income growth rates around these mass points. This suggests that it is valuable to target the uni-variate and bi-variate CDFs of income growth rates, which we showed how to calculate in Corollary 5 and Corollary 6. The slopes of the CDFs around the excess mass regions, for given means of the permanent and transitory shocks, μ_{ϕ} and μ_{ξ}, will also contain valuable information on the variances, σ_{ϕ}^{2} and σ_{ξ}^{2}. Additionally using the moments in Lemma 2, we conjecture that all the parameters are identified.
To test this conjecture, we conduct the following numerical experiment. We first draw J sets of random model parameters indexed by j,

$$
\theta_{j 0}=\left(p_{\phi}, p_{\psi}, p_{\xi}, p_{\eta}, \sigma_{\xi}, \mu_{\xi}, \sigma_{\phi}, \sigma_{\psi}, \sigma_{\eta}, \mu_{\phi}, \rho\right)_{j}
$$

We draw these from a uniform distribution with pre-specified bounds. For each random parameter set, we estimate the model parameters by minimizing

$$
\begin{equation*}
\hat{\theta}_{j}=\arg \min _{\theta}\left[h(\theta)-h\left(\theta_{j 0}\right)\right]^{\prime}\left[h(\theta)-h\left(\theta_{j 0}\right)\right] \tag{3.14}
\end{equation*}
$$

where $h(\bullet)$ is the vector of moments used. If the model is identified with the chosen moments we should be able to recover the true parameter vector for each random draw of true parameters, i.e. $\hat{\theta}_{j}=\theta_{j 0}$.
As moments we use:

1. Mean of 12-month growth rates:
$\mathbb{E}\left[\Delta_{12 k} y_{t}\right], k \in\{1,2, \ldots, 6\}$
2. Variance of $\mathbf{1 2 - m o n t h}$ growth rates:
$\operatorname{Var}\left[\Delta_{12 k} y_{t}\right], k \in\{1,2, \ldots, 6\}$
3. Kurtosis of 12 -month growth rates:
$\operatorname{Kurt}\left[\Delta_{12 k} y_{t}\right], k \in\{1,2, \ldots, 6\}$
4. Auto-covariance of 12 -month growth rates:
$\operatorname{Cov}\left[\Delta_{12} y_{t}, \Delta_{12} y_{t-12 \ell}\right], \ell \in\{1,2,3,4,5\}$
5. Fractional auto-covariance of 12 -month growth rates:
$\operatorname{Cov}\left[\Delta_{12} y_{t}, \Delta_{12} y_{t-\ell}\right], \ell \in\{1,2, \ldots, 11\}$
6. Unconditional CDF of 12-month growth rates:
$\operatorname{Pr}\left[\Delta_{12 k} y_{t}<\omega\right], \omega \in \Omega, k \in\{1,2, \ldots, 5\}$
7. Conditional CDF of 12-month growth rates:
$\operatorname{Pr}\left[\Delta_{12} y_{t}<\omega \mid \Delta_{12} y_{t-12} \in[-0.01,0.01]\right\}, \omega \in \Omega$
8. Unconditional CDF of 1-month growth rates:
$\operatorname{Pr}\left[\Delta y_{t}<\omega\right], \omega \in \Omega$
9. Conditional CDF of 1-month growth rates:
$\operatorname{Pr}\left[\Delta y_{t}<\omega \mid \Delta y_{t-1} \in[-0.01,0.01]\right], \omega \in \Omega$
10. Changes in variance of income levels
$\operatorname{Var}\left[y_{t+12 k}\right]-\operatorname{Var}\left[y_{t}\right], k \in\{1,2, \ldots, 5\}$
11. Changes in covariance of income levels
$\operatorname{Cov}\left[y_{t}, y_{t+12+12 \ell}\right]-\operatorname{Cov}\left[y_{t+12}, y_{t}\right], \ell \in\{1,2, \ldots, 4\}$
where $\Omega=\left\{ \pm x, x \in\left[0.50,0.30,0.10,0.05,0.01,10^{-3}, 10^{-4}\right\}\right\}$. For the 12 -month growth rates, we thus combine standard moments for the mean, variance, and autocovariance with additional information in the kurtosis and unconditional and conditional CDFs. To improve on identification in practice, we also include the unconditional and conditional CDF of 1-month growth rates, and information from the variance and covariance of income levels. In general, we include relatively fewer
values of ω for the conditional CDF because this moment is by far the most timeconsuming to calculate, creating a bottleneck in the estimation procedure. ${ }^{2}$ We use the exact same moments when estimating the model on the data in the next section. ${ }^{3}$ We solve the problem in eq. (3.14) using a numerical optimizer over $\left(p_{\phi}, p_{\psi}, p_{\xi}, p_{\eta}, \sigma_{\xi}, \mu_{\xi}\right)$ with $\left(\sigma_{\phi}, \sigma_{\psi}, \sigma_{\eta}, \mu_{\phi}, \rho\right)$ implied by Lemma 2. The threat against identification is that there is a global minimum of the objective function away from the true parameters. On top of this, numerical optimization might, however, also result in convergence to a (numerical) local minimum. To ensure that we give the optimizer a possibility to end up in a global minimum away from the true parameters, we first evaluate the objective function for M random guesses and start the optimizer in the best guess. To minimize the risk of not having found the actual global minimum, we additionally evaluate the objective function for a weighted average of the previous M guesses and the true parameters, and again start the optimizer in the best guess. The result with the lowest objective function across the two optimizer runs is the estimate, $\hat{\theta}_{j}$. In the empirical application below we implement a (costly) multi-start estimation algorithm instead.
[^2]Figure 3.1: Test of identification of $p_{\phi}, p_{\psi}, p_{\xi}$ and p_{η}.

Notes: These figures show the results of $J=500$ experiments. In each experiment, we draw a set of random model parameters, $\theta_{0}=\left(p_{\phi}, p_{\psi}, p_{\xi}, p_{\eta}, \sigma_{\xi}, \mu_{\xi}, \sigma_{\phi}, \sigma_{\psi}, \sigma_{\eta}, \mu_{\phi}, \rho\right)$, inside the bounds shown on the x-axes above. The model is estimated by minimizing the objective in eq. (3.14) imposing the bounds of the true parameters. The targeted moments are listed in sub-section 3.2. Each plot is a scatter-plot with the true parameter value on the x -axis and the estimated value on the y-axis. The 45 -degree line thus represents the case where the estimated and true value coincide. We solve the problem in eq. (3.14) using a numerical optimizer over ($p_{\phi}, p_{\psi}, p_{\xi}, p_{\eta}, \sigma_{\xi}, \mu_{\xi}$) with $\left(\sigma_{\phi}, \sigma_{\psi}, \sigma_{\eta}, \mu_{\phi}, \rho\right)$ implied by Lemma 2. We first evaluate the objective function for $M=500$ random guesses inside the pre-specified bounds and start the optimizer in the best guess. We next evaluate the objective function for $M=500$ new guesses calculated as a weighted average of the previous guesses (weight $=0.01$) and the true parameters (weight $=0.99$) and again start the optimizer in the best guess. The best result across the two converged optimizer runs is used (blue squares and circles). The converged result starting from the random guess is also shown (green dots).

Figure 3.2: Test of identification of $\sigma_{\phi}, \sigma_{\psi}, \sigma_{\xi}$ and σ_{η}.
(a) σ_{ϕ}

(c) σ_{ξ}

(b) σ_{ψ}

(d) σ_{η}

Notes: See Figure 3.1.

Figure 3.3: Test of identification of μ_{ϕ}, μ_{ξ}, and ρ.

Notes: See Figure 3.1.

In Figures 3.1--3.3, we plot the true parameters, $\theta_{j 0}$, against the estimated parameters, $\hat{\theta}_{j}$. The parameters seem to be well-identified as almost no deviations from the true parameters are observed as all estimations end up on the 45-degree line (the blue squares and circles). When there are small deviations, the resulting values of the objective functions are above 1e-8, while we know that the value at the true minimum is exactly 0 (up to numerical precision). This indicates that full convergence has not been achieved. ${ }^{4}$ The green dots show where the estimator ends up when starting from the random guess. We see that it sometimes converges to points away from the 45 -degree line, but that these are local minima, as the estimations starting closer to the true parameters have a lower objective value after the solver converges.

[^3]
4 Application: Danish Monthly Income Data

In this section, we provide background information on the Danish administrative data, explain the construction of the estimation sample, and present our empirical results. We then discuss the performance of our model in fitting the data, and show that our estimated income process is able to match key patterns in both monthly and annual income data.

4.1 Sample selection

We use 8 years of Danish administrative data from January 2011 to December 2018. All firms in Denmark have to report wages and hours for every employee to the national tax agency. This information is reported monthly and is recorded in the BFL register. ${ }^{5}$ The register contains unique identifiers for both the employees and firms allowing us to link the data to other administrative data at Statistics Denmark. We aggregate the data to monthly frequency (summing across multiple jobs) and include all labor income before taxes.
As is common in the literature on income dynamics, we focus our analysis on primeage male workers with a strong attachment to the labor market. This is beneficial in terms of making the sample more homogeneous, but it comes at a cost in terms of a loss of representativeness. Specifically, we use males from the birth cohorts 1956-1978 in the age span 35-60 ensuring at least 6 years of longitudinal data. We further require that individuals are always in the annual income register, are never self-employed, and never retire in our sample period. We define self-employed as individuals having more than 20,000 DKK in annual profits from own firms. Finally, we remove individuals who at any point in the sample period have an annual labor income above 3 million DKK 6, earn more than 500,000 DKK in a single month, or who are not full-time-employed in at least half of the months in which they are observed. We define an individual to be full-time employed in a given month if his reported hours are above 95 percent of the standard full-time measure of 160.33 hours, and simultaneously have labor income in excess of 10,000 DKK. An individual is denoted unemployed if his monthly income is missing or less than 1,000 DKK. Details of the sample selection process are described in Table B. 1 in

[^4]the Online Supplemental Material. We end up with a sample of about 400,000 male workers who are observed for around 93 months on average. About 90 percent of the observations are full-time employed, and 2.7 percent are unemployed. We calculate growth rates as log-differences for all employed observations. To maintain the large share of zero-growth observations, which are key to our analysis of the frequency of income shocks, we do not perform initial regressions to remove potential effects of individual characteristics. We winsorize observations at the 0.1th and 99.9th percentiles to avoid potential problems with outliers. We keep unemployment spells with zero income in the data and augment the baseline model with an unemployment process, when we evaluate the model fit of annual income growth in Section 4.5. To reduce the influence of seasonality, we only use data for February, March, and August through November when calculating 1-month growth rates.

4.2 Data overview

Figure 4.1a shows the average monthly labor income (conditional on employment) for each cohort and year. We observe a standard life-cycle profile for labor income with initially high growth gradually slowing down.

Figure 4.1: Data overview.

Notes: This figure shows descriptive statistics calculated on monthly income data. Panel (a): Average monthly labor income. Each line represents a birth cohort. Panel (b)-(f): Observations are pooled across birth cohorts and years, and plotted on a symmetric log-scale such that 10^{0} is 1 percent, 10^{1} is 10 percent, etc.

Figure 4.1b shows the pooled distribution of 1-month growth rates on symmetric \log-scale in percent (i.e. 10^{0} is 1 percent, 10^{1} is 10 percent, etc.). We see that in most calendar months more than half of the observations are very close to zero, and while February-March and August-November seem very similar, the remaining
months are highly affected by seasonal fluctuations. ${ }^{7}$
Figure 4.1c shows that the seasonality in 12-month growth is very limited, and that a substantial share of the 12 -month changes is also very close to zero. Figure 4.1d illustrates that the zero changes disappear as the horizon is increased. Figure 4.1e shows that conditioning on age mostly affects the right-hand side of the distribution, whereas the left-hand side of the distribution remains largely unaffected. Figure 4.1f shows that the left-tail of the distribution collapses when conditioning on the lagged growth rate being numerically small. This indicates that most of the negative changes observed in the data are linked to previous positive changes.

4.3 Estimation results

We estimate the model parameters, $\theta=\left(p_{\phi}, p_{\psi}, p_{\xi}, p_{\eta}, \sigma_{\xi}, \mu_{\xi}, \sigma_{\phi}, \sigma_{\psi}, \sigma_{\eta}, \mu_{\phi}, \rho\right)$, of the monthly income process in eq. (2.1) using the generalized method of moments (GMM) as

$$
\begin{equation*}
\hat{\theta}=\arg \min _{\theta}\left[h(\theta)-h^{\text {data }}\right]^{\prime} W\left[h(\theta)-h^{\text {data }}\right] \tag{4.1}
\end{equation*}
$$

where $h(\theta)$ is the vector of theoretical model moments calculated given $\theta, h^{\text {data }}$ are the same moments calculated in the data, and W is a symmetric positive semidefinite weighting matrix. We use the same moments as specified in Section 3.2. We use a diagonal weighting matrix with the inverse of bootstrapped variances of each moment on the diagonal. ${ }^{8}$

The results are shown in Table 4.1. We estimate all of the shocks to be highly infrequent suggesting that this is a crucial extension of the canonical permanenttransitory income process when fitting high-frequency income data. The estimates of the fully specified model are shown in the first column. The permanent shock, ϕ_{t}, arrives with a probability of 15 percent and has a positive mean of 0.012 and a standard deviation of 0.015 . In contrast, the persistent shock, ψ_{t}, arrives much more infrequently with a probability of just below 1 percent, and has a larger standard deviation of 0.20 . An estimate of $\rho=0$ implies that the arrival of a new shock wipes out the history of past shocks. In between the arrival of shocks, however, recall

[^5]that the persistent component exhibits an autocorrelation of $\varrho=1$. Taken together, this implies that the persistent component is still highly correlated over time even when ρ is arbitrarily close to zero. The mean-zero transitory shock, η_{t}, arrives with a probability of about 7 percent and has an enormous standard deviation of 0.65 . The other transitory shock, ξ_{t}, has positive a mean of 0.085 and arrives more regularly with a probability of 0.21 , but a lower standard deviation of 0.12 .

The parameters are all very precisely estimated. The only parameter with a substantial standard deviation is the parameter ρ that governs the dependence of the persistent income component on the history of past shocks. In practice, this parameter is hard to estimate precisely because of the extremely infrequent arrival of the ψ_{t} shock. To investigate the effect of ρ, we show estimation results when we fix $\rho=0.99$ and $\rho=0.50$ in the second and third columns, respectively. While the other parameter estimates remain largely unchanged, the value of the objective function increases. Below, we show that this reduction in fit stems primarily from the auto-covariances which these restricted models cannot fit. The infrequency of the shock, however, implies that ρ is hard to identify even in our long panel data.

In column four we remove the persistent shock completely $\left(\psi_{t}=0\right)$ to investigate if the very low arrival probability suggests that the persistent process is not important to fit the data. The very large increase in the value of the objective function suggests that the persistent shock is absolutely central to include in the process to be able to match both the auto-covariances and the growth-rate distributions in the data. Finally, in column five we instead remove the non-zero mean transitory shock ($\xi_{t}=$ 0) which also leads to a substantial increase in the value of the objective function. Both of these experiments show that these two components are necessary to fit the data well.

Table 4.1: Estimation results.

		Estimates				
Parameters		baseline	$\rho=0.99$	$\rho=0.5$	$\psi_{t}=0$	$\xi_{t}=0$
Prob. of permanent shock	p_{ϕ}	0.146	0.146	0.146	0.159	0.158
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Prob. of persistent shock	p_{ψ}	0.008	0.009	0.009	$0.000 \dagger$	0.003
		(0.000)	(0.000)	(0.000)		(0.000)
Prob. of mean-zero transitory shock	p_{η}	0.071	0.072	0.072	0.091	0.237
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Prob. of transitory shock	p_{ξ}	0.206	0.204	0.205	0.165	$0.000 \dagger$
		(0.000)	(0.000)	(0.000)	(0.000)	
Std. of permanent shock	σ_{ϕ}	0.015	0.015	0.015	0.024	0.019
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Std. of persistent shock	σ_{ψ}	0.198	0.253	0.231	$0.000 \dagger$	0.424
		(0.002)	(0.001)	(0.000)		(0.007)
Std. of mean-zero transitory shock	σ_{η}	0.646	0.643	0.645	0.583	0.281
		(0.001)	(0.001)	(0.001)	(0.000)	(0.000)
Std. of transitory shock	σ_{ξ}	0.122	0.123	0.122	0.141	$0.000 \dagger$
Persistence		(0.000)	(0.000)	(0.000)	(0.000)	
Mean of permanent shock	ρ	0.000	$0.990 \dagger$	$0.500 \dagger$	$0.000 \dagger$	0.000
		(0.022)				(0.038)
Mean of transitory shock	μ_{ϕ}	0.012	0.012	0.012	0.011	0.011
		(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Objective function		0.085	0.086	0.086	0.162	$0.000 \dagger$

Notes: This table shows the estimation results. The upper part of the table shows the parameter estimates.
The lower part of the table shows the resulting value of the objective function calculated as in eq. (4.1). See the text for details on the chosen moments and weighting matrix. In the data, we calculate each moment separately by age and birth cohort, and target the average across birth cohorts and age in the estimation. We winsorize the data used in the calculation of moments at the 0.1 th and 99.9 th percentiles to dampen the effect of outliers on our estimates. The standard errors are computed using a variancecovariance matrix calculated using 500 bootstraps.
\dagger fixed parameter

4.4 Fit

Next we investigate the performance of the model in fitting the monthly income data. Figure 4.2 shows the model fit for the mean, variance, and kurtosis of $12 k$-month growth rates for $k \in\{1, \ldots, 6\}$. The fit of the mean is good for all specifications at all horizons. The variance and kurtosis profiles are fitted well for both the baseline specification and when varying the auto-correlation parameter, ρ. However, when removing the persistent component $\left(\psi_{t}=0\right)$ the variance for high values of k is too low, while the kurtosis profile starts too low and remains flat. When removing the non-zero mean transitory shock $\left(\xi_{t}=0\right)$ both the variance and kurtosis are consistently too small.

Figure 4.2: Fit: Mean, variance, and kurtosis of $12 k$-month growth rates.

Notes: This figure compares the moments implied by the estimated parameters and the moments in the data. The estimated parameters are shown in Table 4.1. To avoid potential problems with outliers, we winsorize income growth rates at the 0.1 th and 99.9 th percentiles. The solid black line shows the data moments targeted in the estimation. The black dotted line shows the unwinsorized data moments.

Figure 4.3 shows the model fit for the auto-covariances of 12 -month growth rates. Overall we achieve a reasonably good fit, with the exception that most specifications
imply a slightly larger first-order auto-covariance and slightly lower higher-order auto-covariances compared to the data. The baseline specification has the best fit. It is thus clear that including these moments in the estimation will result in a small estimate of ρ. Note that the baseline model implies negative higher-order auto-covariances even though $\rho=0$ because the shock is infrequent. ${ }^{9}$

Figure 4.3: Fit: Auto-covariances of $12 k$-month growth rates.
(a) $k=1$: Full auto-covariance.

(b) $k=1: \ell>1$.

Notes: See Figure 4.2.

Figure 4.4 shows the model fit for the fractional auto-covariances of 12-month growth rates. Except for the specification without an infrequent transitory shock, the estimated income process generates slightly lower fractional auto-covariances for low levels of ℓ and slightly larger values for higher values of ℓ compared to the data. Again the baseline specification provides the best fit among all specifications.

[^6]Figure 4.4: Fit: Fractional auto-covariances of $12 k$-month growth rates.
(a) $k=1$

Notes: See Figure 4.2.

Figure 4.5 shows the model fit for the unconditional CDF of 1-month, 12-month, 24 -month, and 108 -month income growth rates. The fit is remarkably good in the baseline specification. Fixing ρ to 1.0 or 0.5 does not change the fit significantly. In contrast, abstracting from infrequent persistent income shocks, ψ_{t}, or infrequent transitory income shocks, ξ_{t}, leads to a considerably worse fit of the distribution of income growth rates at shorter and longer horizons. This clearly shows why we cannot remove the persistent process completely although the arrival probability is estimated to be quite low. Importantly, the model fits the significant mass-point at zero for 1-month growth rates and the gradual dispersion of the distribution for longer growth rates. This unequivocally demonstrates that allowing for infrequent shocks is absolutely key to match high-frequency income dynamics.

Figure 4.5: Fit: Distributions of income growth rates.
(a) $k=1$
(b) $k=12$

(c) $k=24$

(d) $k=72$

Notes: See Figure 4.2. This figure shows the unconditional distribution of k-month growth rates.

Figure 4.6 shows the CDF of 1-month and 12-month income growth rates conditional on lagged income growth being numerically smaller than one percent. Again, the baseline specification provides a very good fit. However, for both the 1-month and 12 -month growth rates the CDF is too flat for small positive growth rates. For the 12-month growth rate, the proportions of exact zero are a bit too small in the baseline specification. This could indicate that the shocks are not fully i.i.d. Shutting off either the persistent or transitory components worsens the fit significantly.

Figure 4.6: Fit: Conditional distributions of k-month growth rates.
(a) $k=1$
(b) $k=12$

Notes: See Figure 4.2. The figure shows the distribution of 1 -month and 12 -month growth rates conditional on the lagged income growth rate being numerically small, i.e. $\Delta_{12 k} y_{t-12 k} \in$ $[-0.01,0.01], k \in\{1,12\}$.

Figure 4.7 shows moments related to the level of log-income. As frequently observed in annual data, there exists a certain tension between moments in growth rates and level (see, e.g, Daly et al. (2022)). The baseline specification implies a too low increase in the variance of log-income over time. This is improved when the persistent shock is removed and the standard deviation of the permanent shock is estimated to be slightly more frequent and has a standard deviation of 0.024 instead of 0.015 . This is also the case when the transitory shock, ξ_{t}, is removed. The changes in covariances of the income level are, however, best matched in the baseline specification.

Figure 4.7: Fit: Variance and covariances of log-income.

Notes: See Figure 4.2. This figure shows changes in variance of log-income and co-variances of log-income.

4.5 Fit: Aggregating to Annual Frequency

Here we aggregate the monthly income process to the annual frequency to illustrate the estimated model fit on a lower frequency. For this purpose we extend the model to one of the monthly income level (and not the log hereof), allowing for unemployment shocks. Concretely, our specification for monthly income, Y_{t}, in month t is given by

$$
\begin{align*}
Y_{t} & =\left(1-\pi_{t}^{u}\right) \exp \left(y_{t}\right) \tag{4.2}\\
\pi_{t}^{u} \mid d_{t} & \sim \operatorname{Bernoulli}\left(p_{u}\left(d_{t}\right)\right) \\
p_{u}\left(d_{t}\right) & = \begin{cases}1-p_{e} & \text { if } d_{t}=0 \\
p_{u \mid d}\left(d_{t}\right) & \text { else }\end{cases}
\end{align*}
$$

where $\pi_{t}^{u} \in\{0,1\}$ is an unemployment indicator, p_{e} is the probability of remaining employed if employed in the previous period and $p_{u \mid d}\left(d_{t}\right)$ is the likelihood of remaining unemployed conditional on the monthly unemployment duration, d_{t}. The annual income in year s is then

$$
\begin{equation*}
\bar{Y}_{s}=\sum_{t=1}^{12} Y_{(s-1) \cdot 12+t} \tag{4.3}
\end{equation*}
$$

Figure 4.8 shows the estimated conditional probability function, $p_{u \mid d}\left(d_{t}\right)$, using the Danish data. The likelihood of remaining unemployed is increasing and concave in the unemployment duration and flattens at around 88 percent after 9 months of unemployment. We thus assume that the conditional unemployment probability is constant after 12 months. For the employed, we estimate the monthly probability of remaining employed to be $p_{e}=0.994$.

Figure 4.8: Unemployment probabilities, conditional on unemployment duration.

Notes: This figure shows the empirical probabilities of remaining unemployed conditional on unemployment duration, $p_{u \mid d}(d)$.

Figure 4.9 shows moments of $\Delta_{k} \bar{y}_{s} \equiv \Delta_{k} \log \left(\bar{Y}_{s}\right)$. Unlike the monthly income moments used in estimation above, these annual moments do not have closed form expressions. We instead simulate the monthly income process based on (2.1) and (4.2) and aggregate to the annual level. We initialize our simulations as draws from the stationary distributions of p_{t} and d_{t} where the former is known in closed form (see Lemma 1) and the latter distribution is based on initial simulations of the unemployment process. We simulate 100,000 individuals for 30 years (360 months).

Figure 4.9: Fit: Mean, variance and kurtosis of annual growth rates.

Notes: This figure compares the annual moments implied by the estimated parameters and the moments in the data. The estimated parameters are shown in Table 4.1 and Figure 4.8. Modelbased moments are based on simulations from the extended model with and without unemployment.

The annual fit is quite good. The estimated income process matches the average annual income growth rate well even without the unemployment shock. The discrepancy between empirical and simulated annual moments reflects the small discrepancies in the monthly moments discussed above. While the baseline model without unemployment matches the increase in the variance of annual income growth as the horizon, k, increases, the unemployment shock is needed to match the level of the
variance of annual income growth. The kurtosis of annual income growth is way too low if unemployment shocks are not included, but also reasonably close to the empirical kurtosis, if the unemployment shock is included. This stark difference between what drives kurtosis at the monthly and the annual level cautions against an estimation that relies on annual data alone.

Figure 4.10: Fit: Autocovariances of annual growth rates.

Notes: See Figure 4.9.

Figure 4.10 shows the model fit for the auto-covariances of annual growth rates. Again, the model with unemployement shocks fit the annual data quite well. Figure B. 2 in the Online Supplemental Material shows the CDF of k-year annual income growth rates. The model replicates the overall shape of the distribution, but is more symmetric than the empirical distribution.

Lastly, we explore to what extent our income process can fit the persistence in annual income. Importantly, we allow the persistence to depend on both lagged income, and the sign and magnitude of the realized shock. This generalized notion of persistence has been recently emphasized by Arellano et al. (2017) as an important feature of the income process. In their framework, income follows a general first-order Markov process. Let $Q\left(\tau \mid \bar{y}_{s-1}\right)$ denote the τ-th conditional quantile of income $\bar{y}_{s} \equiv \log \bar{Y}_{s}$ given \bar{y}_{s-1}, for each $\tau \in(0,1)$. The generalized notion of persistence is then captured by a derivative effect,

$$
\begin{equation*}
\bar{\rho}\left(\tau, \bar{y}_{s-1}\right)=\frac{\partial Q\left(\tau \mid \bar{y}_{s-1}\right)}{\partial \bar{y}_{s-1}}, \tag{4.4}
\end{equation*}
$$

which measures the persistence of income \bar{y}_{s-1} when it is hit by a shock of rank τ. Empirically, we obtain these measures of persistence from coefficients of quantile autoregressions (Koenker and Xiao (2006)), where we use an equidistant grid of 11 quantiles and flexibly parametrize the quantile functions as fourth-degree Hermite polynomials. We then estimate quantile autoregressions separately for the simulated
and actual income data. Figure 4.11 plots the level of persistence as a function of the percentile of the shock and the percentile of past income for both the simulated and actual income data.

Figure 4.11: Fit: Nonlinear persistence.

Notes: This figure shows the persistence of (log-)income in simulated and actual income data, depending on the quantile of previous income and the quantile of the shock received in the current period. The measures of persistence are calculated from coefficients of quantile autoregressions, using an equidistant grid of 11 quantiles and parametrizing the quantile functions as fourth-degree Hermite polynomials.

Figure 4.11 suggests that our estimated income process, aggregated to annual frequency, is able to match the empirical patterns of nonlinear persistence very well. Remarkably similar patterns of nonlinear persistence have been shown to be present in Norwegian administrative data and the PSID (see, e.g., Arellano et al. (2017) and De Nardi et al. (2020)).

5 Conclusions

In this paper, we have analyzed and estimated a generalization of the canonical permanent-transitory income model allowing for infrequent and non-zero mean shocks. We provide analytical formulas for the unconditional and conditional distributions of income growth rates and higher-order moments. We prove a set of identification results and numerically validate that we can simultaneously identify the frequency, variance, and persistence of income shocks.

Using our theoretically motivated monthly income moments, we estimate the proposed model using 8 years of Danish monthly income data. The results show that
income shocks are highly infrequent, and that this is central for explaining the non-Gaussian elements of the data. Consumption-saving models with idiosyncratic income risk should thus pay attention not just to the volatility and persistence of shocks, but also to their frequency.
Extending the analysis in this paper with heterogeneity across types and dynamics over the life-cycle, up and down the job ladder, and in and out of employment is an interesting avenue for future work. Such an extended model is likely to match the observed negative skewness of income growth.

References

Arellano, M., Blundell, R., and Bonhomme, S. (2017). Earnings and Consumption Dynamics: A Nonlinear Panel Data Framework. Econometrica, 85(3):693-734.

Auclert, A., Rognlie, M., and Straub, L. (2018). The Intertemporal Keynesian Cross. NBER Working Paper 25020, National Bureau of Economic Research.

Auclert, A., Rognlie, M., and Straub, L. (2020). Micro Jumps, Macro Humps: Monetary Policy and Business Cycles in an Estimated HANK Model. NBER Working Paper 26647.

Blundell, R., Graber, M., and Mogstad, M. (2015). Labor income dynamics and the insurance from taxes, transfers, and the family. Journal of Public Economics, 127:58-73.

Browning, M. and Ejrnæs, M. (2013). Heterogeneity in the Dynamics of Labor Earnings. Annual Review of Economics, 5(1):219-245.

Busch, C., Domeij, D., Guvenen, F., and Madera, R. (2022). Skewed Idiosyncratic Income Risk over the Business Cycle: Sources and Insurance. American Economic Journal: Macroeconomics, 14(2):207-242.

Busch, C. and Ludwig, A. (2022). Higher-Order Income Risk Over the Business Cycle. Technical report.

Crawley, E. (2020). In search of lost time aggregation. Economics Letters, 189:108998.

Crawley, E., Holm, M. B., and Tretvoll, H. (2022). A Parsimonious Model of Idiosyncratic Income. Working Paper.

Crawley, E. and Kuchler, A. (2023). Consumption Heterogeneity: Micro Drivers and Macro Implications. American Economic Journal: Macroeconomics, 15(1):314341.

Daly, M., Hryshko, D., and Manovskii, I. (2022). Improving the Measurement of Earnings Dynamics. International Economic Review, 63(1):95-124.

De Nardi, M., Fella, G., Knoef, M., Paz-Pardo, G., and Van Ooijen, R. (2021). Family and government insurance: Wage, earnings, and income risks in the Netherlands and the U.S. Journal of Public Economics, 193:104327.

De Nardi, M., Fella, G., and Paz-Pardo, G. (2020). Nonlinear Household Earnings Dynamics, Self-Insurance, and Welfare. Journal of the European Economic Association, 18(2):890-926.

Druedahl, J. and Munk-Nielsen, A. (2018). Identifying heterogeneous income profiles using covariances of income levels and future growth rates. Journal of Economic Dynamics and Control, 94:24-42.

Eika, L. (2018). Income dynamics when shocks occur during the year. Economics Letters, 173:27-29.

Friedrich, B., Laun, L., and Meghir, C. (2022). Earnings dynamics of immigrants and natives in Sweden 1985-2016. Quantitative Economics, 13(4):1803-1847.

Guvenen, F., Karahan, F., Ozkan, S., and Song, J. (2021). What Do Data on Millions of U.S. Workers Reveal About Lifecycle Earnings Dynamics? Econometrica, 89(5):2303-2339.

Guvenen, F., Pistaferri, L., and Violante, G. L. (2022). Global trends in income inequality and income dynamics: New insights from GRID. Quantitative Economics, 13(4):1321-1360.

Halvorsen, E., Holter, H., Ozkan, S., and Storesletten, K. (2022a). Dissecting Idiosyncratic Earnings Risk.

Halvorsen, E., Ozkan, S., and Salgado, S. (2022b). Earnings dynamics and its intergenerational transmission: Evidence from Norway. Quantitative Economics, 13(4):1707-1746.

Hryshko, D. (2012). Labor income profiles are not heterogeneous: Evidence from income growth rates. Quantitative Economics, 3(2):177-209.

Kaplan, G., Moll, B., and Violante, G. L. (2018). Monetary Policy According to HANK. American Economic Review, 108(3):697-743.

Kaplan, G. and Violante, G. L. (2014). A Model of the Consumption Response to Fiscal Stimulus Payments. Econometrica, 82(4):1199-1239.

Kaplan, G. and Violante, G. L. (2018). Microeconomic Heterogeneity and Macroeconomic Shocks. Journal of Economic Perspectives, 32(3):167-194.

Klein, P. and Telyukova, I. A. (2013). Measuring high-frequency income risk from low-frequency data. Journal of Economic Dynamics and Control, 37(3):535-542.

Koenker, R. and Xiao, Z. (2006). Quantile Autoregression. Journal of the American Statistical Association, 101(475):980-990.

Kreiner, C. T., Leth-Petersen, S., and Skov, P. E. (2014). Year-End Tax Planning of Top Management: Evidence from High-Frequency Payroll Data. American Economic Review, 104(5):154-158.

Kreiner, C. T., Leth-Petersen, S., and Skov, P. E. (2016). Tax Reforms and Intertemporal Shifting of Wage Income: Evidence from Danish Monthly Payroll Records. American Economic Journal: Economic Policy, 8(3):233-257.

Larkin, K. P. (2023). Job Risk, Separation Shocks and Household Asset Allocation. Working Paper.

Leth-Petersen, S. and Sæverud, J. (2022). Inequality and dynamics of earnings and disposable income in Denmark 1987-2016. Quantitative Economics, 13(4):14931526.

Lillard, L. A. and Willis, R. J. (1978). Dynamic Aspects of Earning Mobility. Econometrica, 46(5):985-1012.

MaCurdy, T. E. (1982). The use of time series processes to model the error structure of earnings in a longitudinal data analysis. Journal of econometrics, 18(1):83-114.

Meghir, C. and Pistaferri, L. (2011). Chapter 9 - Earnings, Consumption and Life Cycle Choices. In Ashenfelter, D. C. a. O., editor, Handbook of Labor Economics, volume 4, Part B, pages 773-854. Elsevier.

A Proofs

This appendix provides proofs for the theoretical results presented in the main text. In sub-section A.1, we state some results regarding mixture distributions used extensively in the proofs. In sub-section A.2, we state some auxiliary lemmas used in the proofs.

A. 1 Mixtures

Remark 1 states a number of general results regarding mixtures.
Remark 1. Let P be a stochastic variable with possible values $\{1, \ldots, m\}$ and corresponding probabilities, p_{i}. Let $X_{1}, X_{2}, \ldots, X_{m}$ be stochastic variables with finite first and second moment, then

$$
\begin{align*}
\mu_{X} \equiv \mathbb{E}\left[X_{P}\right] & =\sum_{i=1}^{m} p_{i} \mu_{i X} \tag{A.1}\\
\Xi_{X} \equiv \mathbb{E}\left[\left(X_{P}-\mu_{X}\right)^{2}\right] & =-\mu_{X}^{2}+\sum_{i=1}^{m} p_{i}\left(\Xi_{i X}+\mu_{i X}^{2}\right), \tag{A.2}
\end{align*}
$$

where

$$
\begin{aligned}
\mu_{i X} & \equiv \mathbb{E}\left[X_{i}\right] \\
\Xi_{i X} & \equiv \mathbb{E}\left[\left(X_{i}-\mu_{i}\right)^{2}\right] .
\end{aligned}
$$

Further, let $Y_{1}, Y_{2}, \ldots, Y_{m}$ be another set of stochastic variables with finite first and second moment, then

$$
\begin{equation*}
\operatorname{Cov}\left[X_{P}, Y_{P}\right]=-\mu_{X} \mu_{Y}+\sum_{i=1}^{m} p_{i}\left(\operatorname{Cov}\left[X_{i}, Y_{i}\right]+\mu_{i X} \mu_{i Y}\right) . \tag{A.3}
\end{equation*}
$$

Remark 2 states a general result regarding the skewness and kurtosis of a Gaussian mixture.

Remark 2. Let P be a stochastic variable with possible values $\{1, \ldots, m\}$ and corresponding probabilities, p_{i}. Let $X_{1}, X_{2}, \ldots, X_{m}$ be stochastic variables drawn from Gaussian distributions, then using the same notation as in remark 1 we have

$$
\begin{align*}
\operatorname{Skew}\left[X_{P}\right] & =\frac{1}{\Xi_{X}^{\frac{3}{2}}} \sum_{i=1}^{m} p_{i}\left(\mu_{i X}-\mu_{X}\right)\left(3 \Xi_{i X}+\left(\mu_{i X}-\mu_{X}\right)^{2}\right) \tag{A.4}\\
\operatorname{Kurt}\left[X_{P}\right] & =\frac{1}{\Xi_{X}^{2}} \sum_{i=1}^{m} p_{i}\left(3 \Xi_{i X}^{2}+6\left(\mu_{i X}-\mu_{X}\right)^{2} \Xi_{i X}+\left(\mu_{i X}-\mu_{X}\right)^{4}\right) . \tag{A.5}
\end{align*}
$$

A. 2 Auxiliary lemmas

Lemma 4 provides a formula for the mean and variance of a mean-zero infrequent shock.

Lemma 4. If $X \sim \operatorname{Bernoulli}(p)$ and Y is an independent stochastic variable with mean μ and variance Ξ, then

$$
\begin{aligned}
\mathbb{E}[X Y] & =p \mu \\
\operatorname{Var}[X Y] & =p \Xi+p(1-p) \mu^{2}
\end{aligned}
$$

Proof. We directly have

$$
\begin{aligned}
\mathbb{E}[X Y] & =p \cdot \mathbb{E}[1 \cdot Y]+(1-p) \cdot \mathbb{E}[0 \cdot Y]=p \mu \\
\mathbb{E}\left[Y^{2}\right] & =\operatorname{Var}[Y]+\mathbb{E}[Y]^{2}=\Xi+\mu^{2} \\
\mathbb{E}\left[(X Y)^{2}\right] & =p \cdot \mathbb{E}\left[(1 \cdot Y)^{2}\right]+(1-p) \cdot 0 \cdot \mathbb{E}\left[(0 \cdot Y)^{2}\right] \\
& =p\left(\Xi+\mu^{2}\right) .
\end{aligned}
$$

Using that $\operatorname{Var}[Z]=\mathbb{E}\left[Z^{2}\right]-\mathbb{E}[Z]^{2}$ for any stochastic variable Z, we further have

$$
\begin{aligned}
\operatorname{Var}[X Y] & =\mathbb{E}\left[(X Y)^{2}\right]-\mathbb{E}[X Y]^{2} \\
& =p\left(\Xi+\mu^{2}\right)-p^{2} \mu^{2} \\
& =p \Xi+p \mu^{2}-p^{2} \mu^{2} \\
& =p \Xi+p(1-p) \mu^{2} .
\end{aligned}
$$

Lemma 5 provides a formula for a geometric sum with binomial weights.
Lemma 5. If $X \sim \operatorname{Binomial}(n, p)$ with probability mass function $f_{B}(k \mid n, p)$ and
$\rho \in \mathbb{R}$, then

$$
\begin{equation*}
\forall n \in \mathbb{N}: F(n) \equiv \sum_{k=0}^{n} f_{B}(k \mid n, p) \rho^{k}=(1-p(1-\rho))^{n} \tag{A.6}
\end{equation*}
$$

Proof. Let $Y \sim \operatorname{Bernouilli}(p)$. An equivalent formulation of $F(n)$ then is

$$
\begin{equation*}
F(n)=\sum_{h=0}^{1} \operatorname{Pr}[Y=h] \rho^{h} \sum_{k=0}^{n-1} f_{B}(k \mid n-1, p) \rho^{k} . \tag{A.7}
\end{equation*}
$$

This implies the following recursive formula for $F(n)$,

$$
\begin{aligned}
F(n) & =\sum_{h=0}^{1} p^{h}(1-p)^{1-h} \rho^{h} F(n-1) \\
& =p \rho F(n-1)+(1-p) F(n-1) \\
& =(1-p(1-\rho)) F(n-1) .
\end{aligned}
$$

From $F(1)=p \rho^{1}+(1-\rho) \rho^{0}=1-p(1-\rho)$ the result follows by induction.

Lemma 6 provides a formula for the mean squared number of successes of a binomial distributed variable.

Lemma 6. If $X \sim \operatorname{Binomial}(n, p)$ with probability mass function $f_{B}(k \mid n, p)$, then

$$
\begin{equation*}
\forall n \in \mathbb{N}: F(n) \equiv \sum_{k=0}^{n} f_{B}(k \mid n, p) k^{2}=n p(1-p)+(n p)^{2} \tag{A.8}
\end{equation*}
$$

Proof. Note that $F(n)=\mathbb{E}\left[X^{2}\right]$. Using the standard result for the mean and variance of a binomial variable, we have

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} & =n p(1-p) \Leftrightarrow \\
\mathbb{E}\left[X^{2}\right] & =n p(1-p)+(p n)^{2} .
\end{aligned}
$$

A. 3 Proof of Lemma 1

The probability of a persistent shock arriving in any period is p_{ψ} independently of what happens in any other period, and the sum of probabilities from period 1 to infinity, $\sum_{t=1}^{\infty} p_{\psi}$, thus clearly diverges. By the second Borel-Cantelli lemma the number of arrived shocks therefore converges to infinity for $t \rightarrow \infty$. Consequently,
using the formulation in eq. (2.3), we have

$$
\begin{align*}
\lim _{t \rightarrow \infty} p_{t} & =\lim _{k \rightarrow \infty} \rho^{k} p_{0}+\lim _{k \rightarrow \infty} \sum_{s=0}^{k-1} \rho^{s} \psi_{s} \\
& =\sum_{s=0}^{\infty} \rho^{s} \psi_{s} . \tag{A.9}
\end{align*}
$$

From this, it directly follows using our mean-zero and independence assumptions that

$$
\begin{align*}
\mathbb{E}\left[p_{t}\right] & =\sum_{s=0}^{\infty} \rho^{s} \mathbb{E}\left[\psi_{j}\right]=0 \tag{A.10}\\
\operatorname{Var}\left[p_{t}\right] & =\sum_{s=0}^{\infty} \operatorname{Var}\left[\rho^{s} \psi_{j}\right]=\sum_{s=0}^{\infty} \rho^{2 s} \sigma_{\psi}^{2}=\frac{\sigma_{\psi}^{2}}{1-\rho^{2}} . \tag{A.11}
\end{align*}
$$

A. 4 Proof of Theorem 1

Using the formulation in eq. (2.4) and our mean-zero assumptions, we have

$$
\begin{align*}
\mathbb{E}\left[\Delta_{k} y_{t} \mid n_{\psi}, n_{\phi}, m_{\xi 0}, m_{\xi 1}, m_{\eta 0}, m_{\eta 1}\right] & =\mathbb{E}\left[\Delta_{k} p_{t} \mid n_{\psi}\right]+\mathbb{E}\left[\Delta_{k} z_{t} \mid n_{\phi}\right]+\mathbb{E}\left[\pi_{t}^{\xi} \xi_{t} \mid m_{\xi 1}\right]-\mathbb{E}\left[\pi_{t-1}^{\xi} \xi_{t-1} \mid m_{\xi 0}\right] \\
& +\mathbb{E}\left[\pi_{t}^{\eta} \eta_{t} \mid m_{\eta 1}\right]-\mathbb{E}\left[\pi_{t}^{\eta} \eta_{t-k} \mid m_{\eta 0}\right]+\mathbb{E}\left[\epsilon_{t}\right]-\mathbb{E}\left[\epsilon_{t-k}\right] \\
& =\left(\rho^{n_{\psi}}-1\right)^{2} \mathbb{E}\left[p_{t-k}\right]+\sum_{s=0}^{n_{\psi}-1} \rho^{s} \mathbb{E}\left[\psi_{s}\right] \\
& +\sum_{s=0}^{n_{\phi}-1} \mathbb{E}\left[\phi_{s}\right]+m_{\eta 1} \mu_{\eta}-m_{\eta 0} \mu_{\eta} \\
& =n_{\phi} \mu_{\phi}+\left(m_{\eta 1}-m_{\eta 0}\right) \mu_{\eta}, \tag{A.12}
\end{align*}
$$

where we have used that $\mathbb{E}\left[p_{t-k}\right]=0$ by lemma 1 .
Using the formulation in eq. (2.4) and our independence assumptions, we have

$$
\begin{align*}
\operatorname{Var}\left[\Delta_{k} p_{t} \mid n_{\psi}\right] & =\left(\rho^{n_{\psi}}-1\right)^{2} \operatorname{Var}\left[p_{t-k}\right]+\sum_{s=0}^{n_{\psi}-1} \rho^{2 s} \operatorname{Var}\left[\psi_{s}\right] \\
& =\left(\rho^{n_{\psi}}-1\right)^{2} \frac{\sigma_{\psi}^{2}}{1-\rho^{2}}+\frac{1-\rho^{2 n_{\psi}}}{1-\rho^{2}} \sigma_{\psi}^{2} \\
& =2 \frac{1-\rho^{n_{\psi}}}{1-\rho^{2}} \sigma_{\psi}^{2} \tag{A.13}
\end{align*}
$$

where we have used that $\operatorname{Var}\left[p_{t-k}\right]=\frac{\sigma_{\psi}^{2}}{1-\rho^{2}}$ by lemma 1 .

$$
\operatorname{Var}\left[\Delta_{k} z_{t} \mid n_{\phi}\right]=\sum_{s=0}^{n_{\phi}-1} \operatorname{Var}\left[\phi_{s}\right]=n_{\phi} \sigma_{\phi}^{2}
$$

Using the formulation in eq. (2.5), we directly have $\operatorname{Var}\left[\Delta_{k} z_{t} \mid n_{\phi}\right]=0$, and thus $\operatorname{Cov}\left[\Delta_{k} p_{t}, \Delta_{k} z_{t} \mid n_{\psi}, n_{\phi}\right]=0$.

Using eq. (2.6) and our independence assumptions, we arrive at the result

$$
\begin{align*}
\operatorname{Var}\left[\Delta_{k} y_{t} \mid n_{\psi}, n_{\phi}, m_{\xi 0}, m_{\xi 1}, m_{\eta 0}, m_{\eta 1}\right]= & \operatorname{Var}\left[\Delta_{k} p_{t} \mid n_{\psi}\right]+\operatorname{Var}\left[\Delta_{k} z_{t} \mid n_{\phi}\right] \\
& +\operatorname{Var}\left[\pi_{t}^{\xi} \xi_{t} \mid m_{\xi 1}\right]+\operatorname{Var}\left[\pi_{t-k}^{\xi} \xi_{t-k} \mid m_{\xi 0}\right] \\
& +\operatorname{Var}\left[\pi_{t}^{\eta} \eta_{t} \mid m_{\xi 1}\right]+\operatorname{Var}\left[\pi_{t}^{\eta} \eta_{t} \mid m_{\xi 0}\right] \\
& +\operatorname{Var}\left[\epsilon_{t}\right]+\operatorname{Var}\left[\epsilon_{t-k}\right] \\
= & 2 \frac{1-\rho^{n} \psi}{1-\rho^{2}} \sigma_{\psi}^{2}+n_{\phi} \sigma_{\phi}^{2}+\left(m_{\xi 0}+m_{\xi 1}\right) \sigma_{\xi}^{2} \\
& +\left(m_{\eta 0}+m_{\eta 1}\right) \sigma_{\eta}^{2}+2 \sigma_{\epsilon}^{2} . \tag{A.14}
\end{align*}
$$

A. 5 Proof of Theorem 2

By our assumptions, we have

$$
\begin{aligned}
\Delta_{k} y_{t} & =\Delta_{k} p_{t}+\Delta_{k} z_{t}+m_{\xi 2} \xi_{t}-m_{\xi 1} \xi_{t-k}+m_{\eta 2} \eta_{t}-m_{\eta 1} \eta_{t-k}+\epsilon_{t}-\epsilon_{t-k} \\
\Delta_{k} p_{t} & =\rho^{n_{\psi 1}} p_{t-k}-p_{t-k}+\sum_{s=0}^{n_{\psi 1}-1} \rho^{s} \psi_{s, n_{1}} \\
& =\left(\rho^{n_{\psi 1}}-1\right) \rho^{n_{0 \psi}} p_{t-2 k}+\left(\rho^{n_{\psi 1}}-1\right) \sum_{s=0}^{n_{0 \psi}-1} \rho^{s} \psi_{s, n_{0}}+\sum_{s=0}^{n_{\psi 1}-1} \rho^{s} \psi_{s, n_{1}} \\
\Delta_{k} z_{t} & =\sum_{s=0}^{n_{\phi 1}-1} \phi_{s, n_{1}}
\end{aligned}
$$

and
$\Delta_{k} y_{t-k}=\Delta_{k} p_{t-k}+\Delta_{k} z_{t-k}+m_{\xi 1} \xi_{t-k}-m_{\xi 0} \xi_{t-2 k}+m_{\eta 1} \eta_{t-k}-m_{\eta 0} \eta_{t-2 k}+\epsilon_{t-k}-\epsilon_{t-2 k}$
$\Delta_{k} p_{t-k}=\left(\rho^{n_{0 \psi}}-1\right) p_{t-2 k}+\sum_{s=0}^{n_{0 \psi}-1} \rho^{s} \psi_{s, n_{0}}$
$\Delta_{k} z_{t-k}=\sum_{s=0}^{n_{0 \phi}-1} \phi_{s, n_{0}}$.
This implies

$$
\begin{aligned}
\operatorname{Cov}\left[\Delta_{k} p_{t}, \Delta_{k} p_{t-k} \mid n_{0}, n_{1}\right]= & \left(\rho^{n_{\psi 1}}-1\right) \rho^{n_{0 \psi}}\left(\rho^{n_{0 \psi}}-1\right) \operatorname{Var}\left[p_{t-2 k}\right] \\
& +\left(\rho^{n_{\psi 1}}-1\right) \sum_{s=0}^{n_{0, \psi}-1} \rho^{2 s} \sigma_{\psi}^{2} \\
= & \left(\rho^{n_{\psi+1}}-1\right) \rho^{n_{0 \psi}}\left(\rho^{n_{0 \psi}}-1\right) \frac{\sigma_{\psi}^{2}}{1-\rho^{2}} \\
& +\left(\rho^{n_{\psi 1}}-1\right) \frac{1-\rho^{2 n_{0 \psi}}}{1-\rho^{2}} \sigma_{\psi}^{2} \\
= & \left(\rho^{n_{\psi}}-1\right) \frac{\rho^{2 n_{0 \psi}}-\rho^{n_{0 \psi}}+1-\rho^{2 n_{0 \psi}}}{1-\rho^{2}} \sigma_{\psi}^{2} \\
= & \frac{\left(\rho^{n_{1 \psi}}-1\right)\left(1-\rho^{n_{0 \psi}}\right)}{1-\rho^{2}} \sigma_{\psi}^{2} .
\end{aligned}
$$

Noting

$$
\begin{aligned}
\operatorname{Cov}\left[\Delta_{k} p_{t}, \Delta_{k} z_{t-k} \mid n_{0 \psi}, n_{\psi 1}, n_{0 \phi}, n_{\phi 1}\right] & =\operatorname{Cov}\left[\Delta_{k} p_{t-k}, \Delta_{k} z_{t} \mid n_{0 \psi}, n_{\psi 1}, n_{0 \phi}, n_{\phi 1}\right] \\
& =0
\end{aligned}
$$

and using our independence assumptions, we arrive at the result

$$
\begin{aligned}
\operatorname{Cov}\left[\Delta y_{t}, \Delta_{k} y_{t-k} \mid n_{0 \psi}, n_{\psi 1}, n_{0 \phi}, n_{0 \phi}, m_{\xi 1}, m_{\eta 1}\right]= & \operatorname{Cov}\left(\Delta_{k} p_{t}, \Delta_{k} p_{t-k}\right) \\
& -\left(m_{\xi 1} \sigma_{\xi}^{2}+m_{\eta 1} \sigma_{\eta}^{2}+\sigma_{\epsilon}^{2}\right) \\
= & \frac{\left(\rho^{n_{\psi 1}}-1\right)\left(1-\rho^{n_{0 \psi}}\right)}{1-\rho^{2}} \sigma_{\psi}^{2} \\
& -\left(m_{\xi 1} \sigma_{\xi}^{2}+m_{\eta 1} \sigma_{\eta}^{2}+\sigma_{\epsilon}^{2}\right)
\end{aligned}
$$

A. 6 Proof of Corollary 1

A.6.1 Mean

Theorem 1 and remark 1 imply the result

$$
\begin{aligned}
\mathbb{E}\left[\Delta_{k} y_{t}\right] & =\sum_{s \in \mathbb{S}} \omega_{s} \mathbb{E}\left[\Delta_{k} y_{t} \mid n_{\psi}, n_{\phi}, m_{\xi 0}, m_{\xi 1}, m_{\eta 0}, m_{\eta 1}\right] \\
& =\sum_{s \in \mathbb{S}} \omega_{s} n_{\phi} \mu_{\phi} \\
& =\mu_{\phi} \sum_{s \in \mathbb{S}} \omega_{s} n_{\phi} \\
& =\mu_{\phi} \sum_{n_{\phi}=0}^{k} f_{B}\left(n_{\phi} \mid k, p_{\phi}\right) n_{\phi} \\
& =\mu_{\phi} k p_{\phi}
\end{aligned}
$$

A.6.2 Variance

Theorem 1 and remark 1 imply

$$
\begin{aligned}
\operatorname{Var}\left[\Delta_{k} p_{t}\right] & =-\mathbb{E}\left[\Delta_{k} p_{t}\right]^{2}+\sum_{s \in \mathbb{S}} \omega_{s}\left[\operatorname{Var}\left[\Delta_{k} p_{t} \mid n_{\psi}, m_{\xi 0}, m_{\xi 1}\right]+\mathbb{E}\left[\Delta_{k} p_{t} \mid n_{\psi}, m_{\xi 0}, m_{\xi 1}\right]\right]^{2} \\
& =\sum_{s \in \mathbb{S}} \omega_{s} \operatorname{Var}\left[\Delta_{k} p_{t} \mid n_{\psi}\right] \\
& =\sum_{n_{\phi}=0}^{k} f_{B}\left(n_{\psi} \mid k, p_{\psi}\right)\left(2 \frac{1-\rho^{n_{\psi}}}{1-\rho^{2}} \sigma_{\psi}^{2}\right) \\
& =\frac{2 \sigma_{\psi}^{2}}{1-\rho^{2}}\left(\sum_{n_{\psi}=0}^{k} f_{B}\left(n_{\psi} \mid k, p_{\psi}\right)\left(1-\rho^{n_{\psi}}\right)\right) \\
& =\frac{2 \sigma_{\psi}^{2}}{1-\rho^{2}}\left(1-\sum_{n_{\psi}=0}^{k} f_{B}\left(n_{\psi} \mid k, p_{\psi}\right) \rho^{n_{\psi}}\right) \\
& =\frac{2 \sigma_{\psi}^{2}}{1-\rho^{2}}\left(1-\tilde{\rho}_{k}\right)
\end{aligned}
$$

where we have used lemma 5 .

Similarly, we have

$$
\begin{aligned}
\operatorname{Var}\left[\Delta_{k} z_{t}\right] & =-\mathbb{E}\left[\Delta_{k} z_{t}\right]^{2}+\sum_{s \in \mathbb{S}} \omega_{s}\left(\operatorname{Var}\left[\Delta_{k} z_{t} \mid n_{\phi}, m_{\xi 0}, m_{\xi 1}\right]+\mathbb{E}\left[\Delta_{k} z_{t} \mid n_{\phi}, m_{\xi 0}, m_{\xi 1}\right]\right)^{2} \\
& =-\left(k p_{\phi} \mu_{\phi}\right)^{2}+\sum_{s \in \mathbb{S}} \omega_{s}\left(n_{\phi} \sigma_{\phi}^{2}+\left(n_{\phi} \mu_{\phi}\right)\right)^{2} \\
& =-\left(k p_{\phi} \mu_{\phi}\right)^{2}+k p_{\phi} \sigma_{\phi}^{2}+\left(k p_{\phi}\left(1-p_{\phi}\right)+\left(k p_{\phi}\right)^{2}\right) \mu_{\phi}^{2} \\
& =k p_{\phi}\left(1-p_{\phi}\right) \mu_{\phi}^{2}+k p_{\phi} \sigma_{\phi}^{2} \\
& =k\left(\tilde{\mu}_{\phi}^{2}+p_{\phi} \sigma_{\phi}^{2}\right)
\end{aligned}
$$

where we have used lemma (6), and

$$
\begin{aligned}
\operatorname{Cov}\left[\Delta_{k} p_{t}, \Delta_{k} z_{t}\right] & =-\mathbb{E}\left[\Delta_{k} z_{t}\right] \mathbb{E}\left[\Delta_{k} p_{t}\right]+\sum_{s \in \mathbb{S}} \omega_{s}\left[\operatorname{Cov}\left[\Delta_{k} p_{t}, \Delta_{k} z_{t} \mid n_{\psi}, n_{\phi}\right]+\mathbb{E}\left[\Delta_{k} z_{t} \mid n_{\phi}\right] \mathbb{E}\left[\Delta_{k} p_{t} \mid n_{\psi}\right]\right] \\
& =0
\end{aligned}
$$

Using lemma (4), we have

$$
\begin{aligned}
\operatorname{Var}\left[\pi_{t}^{\xi} \xi_{t}\right] & =p_{\xi} \sigma_{\xi}^{2}+p_{\xi}\left(1-p_{\xi}\right) \mu_{\xi}^{2} \\
\operatorname{Var}\left[\pi_{t}^{\eta} \eta_{t}\right] & =p_{\eta} \sigma_{\eta}^{2}+p_{\eta}\left(1-p_{\eta}\right) \mu_{\eta}^{2}=p_{\eta} \sigma_{\eta}^{2}
\end{aligned}
$$

Combining the above results and using our independence assumptions, this implies the result

$$
\begin{aligned}
\operatorname{Var}\left[\Delta_{k} y_{t}\right]= & \operatorname{Var}\left[\Delta_{k} p_{t}\right]+\operatorname{Var}\left[\Delta_{k} z_{t}\right]+\operatorname{Var}\left[\pi_{t}^{\xi} \xi_{t}-\pi_{t-k}^{\xi} \xi_{t-k}\right] \\
& +\operatorname{Var}\left[\pi_{t} \eta_{t}-\pi_{t-k}^{\eta} \eta_{t-k}\right]+\operatorname{Var}\left[\epsilon_{t}-\epsilon_{t-k}\right] \\
= & \frac{2 \sigma_{\psi}^{2}}{1-\rho^{2}}\left(1-\tilde{\rho}_{k}\right)-\left(k p_{\phi} \mu_{\phi}\right)^{2}+\left(k p_{\phi}\left(1-p_{\phi}\right)+\left(k p_{\phi}\right)^{2}\right)\left(\sigma_{\phi}^{2}+\mu_{\phi}\right)^{2} \\
& +2\left(p_{\xi} \sigma_{\xi}^{2}+p_{\xi}\left(1-p_{\xi}\right) \xi+p_{\eta} \sigma_{\eta}^{2}+\sigma_{\epsilon}^{2}\right) \\
= & \frac{2 \sigma_{\psi}^{2}}{1-\rho^{2}}\left(1-\tilde{\rho}_{k}\right)+k\left(\tilde{\mu}_{\phi}^{2}+p_{\phi} \sigma_{\phi}^{2}\right) \\
& +2\left(p_{\xi} \sigma_{\xi}^{2}+\tilde{\mu}_{\xi}^{2}+p_{\eta} \sigma_{\eta}^{2}+\sigma_{\epsilon}^{2}\right)
\end{aligned}
$$

A. 7 Proof of Corollary 2

A.7.1 Autocovariance

By our assumptions, we have

$$
\begin{aligned}
\Delta_{k} p_{t-\ell k} & =\left(\rho^{a_{\psi}}-1\right) p_{t-(\ell+1) k}+\sum_{s=0}^{a_{\psi}-1} \rho^{s} \psi_{s, a_{\psi}} \\
p_{t-k}-p_{t-\ell k} & =\left(\rho^{b_{\psi}}-1\right) p_{t-\ell k}+\sum_{s=0}^{b_{\psi}-1} \rho^{s} \psi_{s, b_{\psi}} \\
\Delta_{k} p_{t} & =\left(\rho^{c_{\psi}}-1\right) p_{t-k}+\sum_{s=0}^{c_{\psi}-1} \rho^{s} \psi_{s, c_{\psi}} \\
& =\left(\rho^{c_{\psi}}-1\right)\left[\rho^{a_{\psi}+b_{\psi}} p_{t-(\ell+1) k}+\rho^{b_{\psi}} \sum_{s=0}^{a_{\psi}-1} \rho^{s} \psi_{s, a_{\psi}}+\sum_{s=0}^{b_{\psi}-1} \rho^{s} \psi_{s, b_{\psi}}\right]+\sum_{s=0}^{c_{\psi}-1} \rho^{s} \psi_{s, c_{\psi}} \\
a_{\psi}, c_{\psi} & \sim \operatorname{Binomial}\left(k, p_{\psi}\right) \\
b_{\psi} & \sim \operatorname{Binomial}\left((\ell-1) k, p_{\psi}\right) .
\end{aligned}
$$

This implies

$$
\begin{aligned}
\operatorname{Cov}\left[\Delta_{k} p_{t}, \Delta_{k} p_{t-\ell k} \mid a_{\psi}, b_{\psi}, c_{\psi}\right]= & \left(\rho^{a_{\psi}}-1\right)\left(\rho^{c_{\psi}}-1\right) \rho^{a_{\psi}+b_{\psi}} \operatorname{Var}\left[p_{t-(\ell+1) k}\right] \\
& +\left(\rho^{c_{\psi}}-1\right) \rho^{b_{\psi}} \sum_{s=0}^{a_{\psi}-1} \rho^{2 s} \sigma_{\psi}^{2} \\
= & \left(\left(\rho^{a_{\psi}}-1\right)\left(\rho^{c_{\psi}}-1\right) \rho^{a_{\psi}+b_{\psi}}+\left(\rho^{c_{\psi}}-1\right) \rho^{b_{\psi}}\left(1-\rho^{2 a_{\psi}}\right)\right) \frac{\sigma_{\psi}^{2}}{1-\rho^{2}} \\
= & -\left(1-\rho^{c_{\psi}}\right)\left(1-\rho^{a_{\psi}}\right) \rho^{b_{\psi}} \frac{\sigma_{\psi}^{2}}{1-\rho^{2}},
\end{aligned}
$$

where we have used that $\operatorname{Var}\left[p_{t-(\ell+1) k}\right]=\frac{\sigma_{\psi}^{2}}{1-\rho^{2}}$ by lemma 1.

Using remark 1 and lemma 5, we now have

$$
\begin{aligned}
\operatorname{Cov}\left[\Delta_{k} p_{t}, \Delta_{k} p_{t-\ell k}\right]= & \sum_{a_{\psi}=0}^{k} f_{B}\left(a_{\psi} \mid k, p_{\psi}\right) \sum_{b_{\psi}=0}^{(\ell-1) k} f_{B}\left(b_{\psi} \mid(\ell-1) k, p_{\psi}\right) \sum_{c_{\psi}=0}^{k} f_{B}\left(c_{\psi} \mid k, p_{\psi}\right) \\
& \left(-\left(1-\rho^{c_{\psi}}\right)\left(1-\rho^{a_{\psi}}\right) \rho^{b_{\psi}} \frac{\sigma_{\psi}^{2}}{1-\rho^{2}}\right) \\
= & -\frac{\sigma_{\psi}^{2}}{1-\rho^{2}}\left(\sum_{a_{\psi}=0}^{k} f_{B}\left(a_{\psi} \mid k, p_{\psi}\right)\left(1-\rho^{c_{\psi}}\right)\right) \\
& \left(\sum_{b_{\psi}=0}^{(\ell-1) k} f_{B}\left(b_{\psi} \mid(\ell-1) k, p_{\psi}\right) \rho^{b_{\psi}}\right)\left(\sum_{a_{\psi}=0}^{k} f_{B}\left(c_{\psi} \mid k, p_{\psi}\right)\left(1-\rho^{a_{\psi}}\right)\right) \\
= & -\frac{\sigma_{\psi}^{2}}{1-\rho^{2}}\left(1-\left(1-p_{\psi}(1-\rho)\right)^{k}\right)^{2}\left(1-p_{\psi}(1-\rho)\right)^{(\ell-1) k} .
\end{aligned}
$$

Using remark 1, we also have

$$
\begin{aligned}
\operatorname{Cov}\left[\Delta_{k} z_{t}, \Delta_{k} z_{t-\ell k}\right]= & -\mathbb{E}\left[\Delta_{k} z_{t}\right] \mathbb{E}\left[\Delta_{k} z_{t-k}\right] \\
& +\sum_{a_{\phi}=0}^{k} f_{B}\left(a_{\phi} \mid k, p_{\phi}\right) \sum_{b_{\phi}=0}^{(\ell-1) k} f_{B}\left(b_{\phi} \mid(\ell-1) k, p_{\phi}\right) \sum_{c_{\phi}=0}^{k} f_{B}\left(c_{\phi} \mid k, p_{\phi}\right)\left(a_{\phi} \mu_{\phi}\right)\left(c_{\phi} \mu_{\phi}\right) \\
= & -\left(k p_{\phi} \mu_{\phi}\right)^{2}+\left(\sum_{a_{\phi}=0}^{k} f_{B}\left(a_{\phi} \mid k, p_{\phi}\right) a_{\phi}\right)\left(\sum_{c_{\phi}=0}^{k} f_{B}\left(c_{\phi} \mid k, p_{\phi}\right) c_{\phi}\right) \mu_{\phi}^{2} \\
= & 0 .
\end{aligned}
$$

Combining the above results and using our independence assumptions, this implies the result

$$
\begin{aligned}
\operatorname{Cov}\left[\Delta_{k} y_{t}, \Delta_{k} y_{t-\ell k}\right]= & \operatorname{Cov}\left[\Delta_{k} p_{t}, \Delta_{k} p_{t-\ell k}\right]+\operatorname{Cov}\left[\pi_{t-k}^{\xi} \xi_{t-k}, \pi_{t-\ell k}^{\xi} \xi_{t-\ell k}\right] \\
& +\operatorname{Cov}\left[\pi_{t-k}^{\eta} \eta_{t-k}, \pi_{t-\ell k}^{\eta} \eta_{t-\ell k}\right]+\operatorname{Cov}\left[\epsilon_{t-k}, \epsilon_{t-\ell k}\right] \\
= & \operatorname{Cov}\left[\Delta_{k} p_{t}, \Delta_{k} p_{t-\ell k}\right]- \begin{cases}p_{\xi} \sigma_{\xi}^{2}+\tilde{\mu}_{\xi}^{2}+p_{\eta} \sigma_{\eta}^{2}+\tilde{\mu}_{\eta}^{2}+\sigma_{\epsilon}^{2} & \text { if } \ell=1 \\
0 & \text { if } \ell \in\{2,3, \ldots\} .\end{cases}
\end{aligned}
$$

A.7.2 Fractional covariance

Using the same argumentation as when formulating eq. (2.4), we have

$$
\begin{aligned}
\Delta_{k} p_{t-\ell} & =\left(\rho^{a_{\psi}+b_{\psi}}-1\right) p_{t-\ell-k}+\rho^{b_{\psi}} \sum_{s=0}^{a_{\psi}-1} \rho^{s} \psi_{s, a_{\psi}}+\sum_{s=0}^{b_{\psi}-1} \rho^{s} \psi_{s, b_{\psi}} \\
\Delta_{k} z_{t-\ell} & =\sum_{s=0}^{a_{\phi}-1} \phi_{s, a_{\phi}}+\sum_{s=0}^{b_{\phi}-1} \phi_{s, b_{\phi}} \\
\Delta_{k} p_{t} & =\left(\rho^{b_{\psi}+c_{\psi}}-1\right) p_{t-k}+\rho^{c_{\psi}} \sum_{s=0}^{b_{\psi}-1} \rho^{s} \psi_{s, b_{\psi}}+\sum_{s=0}^{c_{\psi}-1} \rho^{s} \psi_{s, c_{\psi}} \\
& =\left(\rho^{b_{\psi}+c_{\psi}}-1\right)\left[\rho^{a_{\psi}} p_{t-\ell-k}+\sum_{s=0}^{a_{\psi}-1} \rho^{s} \psi_{s, a_{\psi}}\right]+\rho^{c_{\psi}} \sum_{s=0}^{b_{\psi}-1} \rho^{s} \psi_{s, b_{\psi}}+\sum_{s=0}^{c_{\psi}-1} \rho^{s} \psi_{s, c_{\psi}} \\
\Delta_{k} z_{t} & =\sum_{s=0}^{b_{\phi}-1} \phi_{s, b_{\phi}}+\sum_{s=0}^{c_{\phi}-1} \phi_{s, c_{\phi}} \\
a_{i}, c_{i} & \sim \operatorname{Binomial}\left(\ell, p_{i}\right) \quad i \in\{\psi, \phi\} \\
b_{i} & \sim \operatorname{Binomial}\left(k-\ell, p_{i}\right) \quad i \in\{\psi, \phi\}
\end{aligned}
$$

This implies

$$
\begin{aligned}
\operatorname{Cov}\left[\Delta_{k} p_{t}, \Delta_{k} p_{t-\ell} \mid a_{\psi}, b_{\psi}, c_{\psi}\right]= & \left(\rho^{a_{\psi}+b_{\psi}}-1\right)\left(\rho^{b_{\psi}+c_{\psi}}-1\right) \rho^{a_{\psi}} \operatorname{Var}\left[p_{t-\ell-k}\right] \\
& +\left(\rho^{b_{\psi}+c_{\psi}}-1\right) \rho^{b_{\psi}} \sum_{s=0}^{a_{\psi}-1} \rho^{2 s} \sigma_{\psi}^{2} \\
& +\rho^{c_{\psi}} \sum_{s=0}^{b_{\psi}-1} \rho^{2 s} \sigma_{\psi}^{2} \\
= & {\left[\left(\rho^{a_{\psi}+b_{\psi}}-1\right)\left(\rho^{b_{\psi}+c_{\psi}}-1\right) \rho^{a_{\psi}}+\left(\rho^{b_{\psi}+c_{\psi}}-1\right) \rho^{b_{\psi}}\left(1-\rho^{2 a_{\psi}}\right)\right.} \\
& \left.+\rho^{c_{\psi}}\left(1-\rho^{2 b_{\psi}}\right)\right] \cdot \frac{\sigma_{\psi}^{2}}{1-\rho^{2}} \\
= & {\left[\rho^{a_{\psi}}-\rho^{b_{\psi}}+\rho^{c_{\psi}}-\rho^{a_{\psi}+b_{\psi}+c_{\psi}}\right] \frac{\sigma_{\psi}^{2}}{1-\rho^{2}} . }
\end{aligned}
$$

where we have used that $\operatorname{Var}\left[p_{t-\ell-k}\right]=\frac{\sigma_{\psi}^{2}}{1-\rho^{2}}$ by lemma 1 .

Using remark 1 and lemma 5 , we now have

$$
\begin{aligned}
\operatorname{Cov}\left[\Delta_{k} p_{t}, \Delta_{k} p_{t-\ell k}\right]= & \sum_{a_{\psi}=0}^{\ell} f_{B}\left(a_{\psi} \mid \ell, p_{\psi}\right) \sum_{b_{\psi}=0}^{k-\ell} f_{B}\left(b_{\psi} \mid k-\ell, p_{\psi}\right) \sum_{c_{\psi}=0}^{\ell} f_{B}\left(c_{\psi} \mid k, p_{\psi}\right) \\
& \left(\rho^{a_{\psi}}-\rho^{b_{\psi}}+\rho^{c_{\psi}}-\rho^{a_{\psi}+b_{\psi}+c_{\psi}}\right) \frac{\sigma_{\psi}^{2}}{1-\rho^{2}} \\
= & {\left[2\left(1-p_{\psi}(1-\rho)\right)^{\ell}\right.} \\
& -\left(1-p_{\psi}(1-\rho)\right)^{k-\ell} \\
& \left.-\left(1-p_{\psi}(1-\rho)\right)^{2 \ell}\left(1-p_{\psi}(1-\rho)\right)^{k-\ell}\right] \frac{\sigma_{\psi}^{2}}{1-\rho^{2}} \\
= & \left(2 \tilde{\rho}_{\ell}-\tilde{\rho}_{k-\ell}-\tilde{\rho}_{\ell+k}\right) \frac{\sigma_{\psi}^{2}}{1-\rho^{2}}
\end{aligned}
$$

Using remark 1, we also have

$$
\begin{aligned}
\operatorname{Cov}\left[\Delta_{k} z_{t}, \Delta_{k} z_{t-\ell}\right]= & -\mathbb{E}\left[\Delta_{k} z_{t}\right] \mathbb{E}\left[\Delta_{k} z_{t-k}\right] \\
& +\sum_{a_{\phi}=0}^{\ell} f_{B}\left(a_{\phi} \mid \ell, p_{\phi}\right) \sum_{b_{\phi}=0}^{k-\ell} f_{B}\left(b_{\phi} \mid k-\ell, p_{\phi}\right) \sum_{c_{\phi}=0}^{\ell} f_{B}\left(c_{\phi} \mid k, p_{\phi}\right)\left[b \sigma_{\phi}^{2}\right. \\
& \left.+\left(a_{\phi}+b_{\phi}\right)\left(b_{\phi}+c_{\phi}\right) \mu_{\phi}^{2}\right] \\
= & -\left(k p_{\phi} \mu_{\phi}\right)^{2} \\
& +\mu_{\phi}^{2} \sum_{b_{\phi}=0}^{k-\ell} f_{B}\left(b_{\phi} \mid k-\ell, p_{\phi}\right) b_{\phi}^{2}+\sigma_{\phi}^{2} \sum_{b_{\phi}=0}^{k-\ell} f_{B}\left(b_{\phi} \mid k-\ell, p_{\phi}\right) b_{\phi} \\
& +\mu_{\phi}^{2}\left(\sum_{a_{\phi}=0}^{\ell} f_{B}\left(a_{\phi} \mid \ell, p_{\phi}\right) a_{\phi}\right)\left(\sum_{b_{\phi}=0}^{k-\ell} f_{B}\left(b \phi \mid k-\ell, p_{\phi}\right) b_{\phi}\right) \\
& +\mu_{\phi}^{2}\left(\sum_{a_{\phi}=0}^{\ell} f_{B}\left(a_{\phi} \mid \ell, p_{\phi}\right) a_{\phi}\right)\left(\sum_{c_{\phi}=0}^{\ell} f_{B}\left(c_{\phi} \mid k, p_{\phi}\right) c_{\phi}\right) \\
& +\mu_{\phi}^{2}\left(\sum_{b_{\phi}=0}^{k-\ell} f_{B}\left(b_{\phi} \mid k-\ell, p_{\phi}\right) b_{\phi}\right)\left(\sum_{c_{\phi}=0}^{\ell} f_{B}\left(c_{\phi} \mid k, p_{\phi}\right) c_{\phi}\right) \\
= & -\left(k p_{\phi} \mu_{\phi}\right)^{2}+\sigma_{\phi}^{2} p_{\phi}(\ell-k)+\mu_{\phi}^{2}\left(p_{\phi}\left(1-p_{\phi}\right)(\ell-k)\right. \\
& \left.+p_{\phi}^{2}(\ell-k)^{2}+p_{\phi}^{2} 2 \ell(k-\ell)+p_{\phi}^{2} \ell^{2}\right) \\
= & -\left(k p_{\phi} \mu_{\phi}\right)^{2}+\sigma_{\phi}^{2} p_{\phi}(\ell-k)+\mu_{\phi}^{2}\left(p_{\phi}\left(1-p_{\phi}\right)(\ell-k)+\left(k p_{\phi}\right)^{2}\right) \\
= & (k-\ell) \tilde{\mu}_{\phi}^{2}+\sigma_{\phi}^{2} p_{\phi}(\ell-k)
\end{aligned}
$$

Combining the above results and using our independence assumptions, this yields the result

$$
\operatorname{Cov}\left[\Delta_{k} y_{t}, \Delta_{k} y_{t-\ell}\right]=\left(2 \tilde{\rho}_{\ell}-\tilde{\rho}_{k-\ell}-\tilde{\rho}_{\ell+k}\right) \frac{\sigma_{\psi}^{2}}{1-\rho^{2}}+(k-\ell) \tilde{\mu}_{\phi}^{2}+\sigma_{\phi}^{2} p_{\phi}(\ell-k)
$$

A. 8 Proof of Corollary 3

When $\psi_{t}, \xi_{t}, \eta_{t}, \phi_{t}$, and ϵ_{t} are all Gaussian then, using the notation of Theorem $1, \Delta_{k} y_{t} \mid n_{\psi}, n_{\phi}, m_{\xi 0}, m_{\xi 1}, m_{\eta 0}, m_{\eta 1}$ is a linear combination of Gaussian variables and therefore also a Gaussian variable. The mean and variance of $\Delta_{k} y_{t} \mid n_{\psi}, n_{\phi}, m_{\xi 0}, m_{\xi 1}, m_{\eta 0}, m_{\eta 1}$ are given in Theorem 1. Then using remark 2 gives the result.

A. 9 Proof of Corollary 4

Variance. The variance of the transitory shocks are the same in period t and $t+k$ by assumption. In turn, using that all shocks are independent together with Lemma 4, we have that

$$
\begin{aligned}
\operatorname{Var}\left[y_{t+k}\right]-\operatorname{Var}\left[y_{t}\right] & =\operatorname{Var}\left[z_{t+k}\right]-\operatorname{Var}\left[z_{t}\right]+\operatorname{Var}\left[p_{t+k}\right]-\operatorname{Var}\left[p_{t}\right] \\
& =\operatorname{Var}\left[z_{t}+\sum_{j=1}^{k} \pi_{t+j}^{\phi} \phi_{t+j}\right]-\operatorname{Var}\left[z_{t}\right]+\Delta_{k} \operatorname{Var}\left[p_{t+k}\right] \\
& =\sum_{j=1}^{k} \operatorname{Var}\left[\pi_{t+j}^{\phi} \phi_{t+j}\right]+\Delta_{k} \operatorname{Var}\left[p_{t+k}\right] \\
& =k\left(\sigma_{\phi}^{2}+p_{\phi}\left(1-p_{\phi}\right) \mu_{\phi}^{2}+\Delta_{k} \operatorname{Var}\left[p_{t+k}\right]\right.
\end{aligned}
$$

From Theorem 1 we have that $\lim _{t \rightarrow \infty} \Delta_{k} \operatorname{Var}\left[p_{t+k}\right]=0$ and the difference in incomelevel variances converges to

$$
k\left(\sigma_{\phi}^{2}+p_{\phi}\left(1-p_{\phi}\right) \mu_{\phi}^{2} .\right.
$$

Covariance There is no covariance of the transitory shocks by assumption, and the co-variance of the permanent component is independent of the span given a common starting point, i.e. $\operatorname{Cov}\left[z_{t}, z_{t+k}\right]=\operatorname{Cov}\left[z_{t}, z_{t+k+\ell}\right]$. Using that all shocks are assumed to be independent, it follows using Lemma 5 and Lemma 1 that

$$
\begin{aligned}
\operatorname{Cov}\left[y_{t}, y_{t+k+\ell}\right]-\operatorname{Cov}\left[y_{t}, y_{t+k}\right]= & \operatorname{Cov}\left[p_{t}, p_{t+k+\ell}\right]-\operatorname{Cov}\left[p_{t}, p_{t+k}\right] \\
= & \sum_{n_{\psi}=0}^{k+\ell} f_{B}\left(n_{\psi} \mid k+\ell, p_{\psi}\right) \operatorname{Cov}\left[\rho^{n_{\psi}} p_{t}+\sum_{s=1}^{n_{\psi}} \rho^{s} \psi_{s}, p_{t}\right] \\
& -\sum_{n_{\psi}=0}^{k} f_{B}\left(n_{\psi} \mid k, p_{\psi}\right) \operatorname{Cov}\left[\rho^{n_{\psi}} p_{t}+\sum_{s=1}^{n_{\psi}} \rho^{s} \psi_{s}, p_{t}\right] \\
= & \left(1-p_{\psi}(1-\rho)\right)^{k+\ell} \frac{\sigma_{\psi}^{2}}{1-\rho^{2}}-\left(1-p_{\psi}(1-\rho)\right)^{k} \frac{\sigma_{\psi}^{2}}{1-\rho^{2}} \\
= & {\left[\left(1-p_{\psi}(1-\rho)\right)^{k+\ell}-\left(1-p_{\psi}(1-\rho)\right)^{k}\right] \frac{\sigma_{\psi}^{2}}{1-\rho^{2}} }
\end{aligned}
$$

A. 10 Proof of Corollary 5

When $\psi_{t}, \xi_{t}, \eta_{t}, \phi_{t}$, and ϵ_{t} are all Gaussian then, using the notation of Theorem $1, \Delta_{k} y_{t} \mid n_{\psi}, n_{\phi}, m_{\xi 0}, m_{\xi 1}, m_{\eta 0}, m_{\eta 1}$ is a linear combination of Gaussian variables and therefore also a Gaussian variable. The mean and variance of $\Delta_{k} y_{t} \mid n_{\psi}, n_{\phi}, m_{\xi 0}, m_{\xi 1}, m_{\eta 0}, m_{\eta 1}$ are given in Theorem 1. We then have

$$
\operatorname{Pr}\left[\Delta_{k} y_{t}<x \mid n_{\psi}, n_{\phi}, m_{\xi 0}, m_{\xi 1}, m_{\eta 0}, m_{\eta 1}\right]=\Phi\left(\frac{x-\mu_{s}}{\sqrt{\Xi_{s}}}\right)
$$

Consequently

$$
\begin{aligned}
\operatorname{Pr}\left[\Delta_{k} y_{t}<x\right] & =\sum_{s \in \mathbb{S}} \omega_{s} \operatorname{Pr}\left[\Delta_{k} y_{t}<x \mid n_{\psi}, n_{\phi}, m_{\xi 0}, m_{\xi 1}, m_{\eta 0}, m_{\eta 1}\right] \\
& =\sum_{s \in \mathbb{S}} \omega_{s} \Phi\left(\frac{x-\mu_{s}}{\sqrt{\Xi_{s}}}\right)
\end{aligned}
$$

A. 11 Proof of Corollary 6

When $\psi_{t}, \xi_{t}, \eta_{t}, \phi_{t}$, and ϵ_{t} are all Gaussian then, using the notation of Theorem 2, $\Delta_{k} y_{t} \mid n_{\psi 1}, n_{\psi 2} n_{\phi 1}, n_{\phi 2}, m_{\xi 0}, m_{\xi 1}, m_{\xi 2}, m_{\eta 0}, m_{\eta 1}, m_{\eta 2}$ and $\Delta_{k} y_{t-k} \mid n_{\psi 1}, n_{\psi 2} n_{\phi 1}, n_{\phi 2}, m_{\xi 0}, m_{\xi 1}, m_{\xi 2}, m_{\eta 0}, m_{\eta 1}, m_{\eta^{2}}$ are both linear combinations of Gaussian variables and therefore jointly Gaussian. The covariances matrix is implied by Theorem 2. We then have

$$
\begin{aligned}
\operatorname{Pr}\left[\Delta_{k} y_{t}\right. & \left.<x_{1} \wedge \Delta_{k} y_{t-k}<x_{2} \mid n_{\psi 1}, n_{\psi 2} n_{\phi 1}, n_{\phi 2}, m_{\xi 0}, m_{\xi 1}, m_{\xi 2}, m_{\eta 0}, m_{\eta 1}, m_{\eta 2}\right] \\
& =\Phi_{2}\left(\frac{x_{1}-\mu_{1 s}}{\sqrt{\Xi_{1 s}}}, \frac{x_{2}-\mu_{2 s}}{\sqrt{\Xi_{2 s}}}, \frac{\mathbb{C}_{s}}{\sqrt{\Xi_{1 s}} \sqrt{\Xi_{2 s}}}\right)
\end{aligned}
$$

Consequently

$$
\begin{aligned}
\operatorname{Pr}\left[\Delta_{k} y_{t}<x_{1} \wedge \Delta_{k} y_{t-k}<x_{2}\right]= & \sum_{s \in \mathbb{S}} \omega_{s} \operatorname{Pr}\left[\Delta_{k} y_{t}<x_{1} \wedge \Delta_{k} y_{t-k}<x_{2} \mid\right. \\
& \left.n_{\psi 1}, n_{\psi 2} n_{\phi 1}, n_{\phi 2}, m_{\xi 0}, m_{\xi 1}, m_{\xi 2}, m_{\eta 0}, m_{\eta 1}, m_{\eta 2}\right] \\
= & \sum_{s \in \mathbb{S}} \omega_{s} \Phi\left(\frac{x_{1}-\mu_{1 s}}{\sqrt{\Xi_{1 s}}}, \frac{x_{2}-\mu_{2 s}}{\sqrt{\Xi_{2 s}}}, \frac{\mathbb{C}_{s}}{\sqrt{\Xi_{1 s}} \sqrt{\Xi_{2 s}}}\right)
\end{aligned}
$$

B Additional tables and figures

Table B.1: Sample Selection.

	Individuals	Observations
0. Initial sample	894,828	$83,351,112$
1. Always in income register	868,884	$80,948,028$
2. Never self-employed	725,852	$67,582,788$
3. Never retired	639,479	$59,579,988$
4. Annual wage never above 3 mil. DKK	636,899	$59,336,580$
5. Monthly wage never above 500,000 DKK	628,664	$58,560,420$
6. Full-time employed 50 percent of the time	438,494	$40,878,804$

Notes: Anyone with more than 20,000 DKK in annual non-labor business income is defined as self-employed. Anyone with income from private or public pensions is defined as retired. We define an individual to be full-time employed if his reported hours are above 95 percent of the standard full-time measure of 160.33 hours, and simultaneously have monthly labor income in excess of 10,000 DKK. An individual is unemployed if his monthly income is missing or less than 1,000 DKK. Monetary selection cut-offs are adjusted relative to 2019 using the change in disposable income of Danish men in the age range $35-59$ based on the series INDKP106 from Statistics Denmark. In the sample period, the USD-DKK exchange rate has fluctuated in the range 5-7.

Figure B.1: Additional data figures

(c) Share of 1-month growth rates ≤ 1-percent
(d) Share of 1-month growth rates ≤ 5-percent

(e) Time-profile of 12-month growth rate

(f) Time-profile of 1-month growth rate

Notes: Panels (a)-(b) show the age profiles of the mean and variance of monthly log-income. Panels (c)-(d) show the age profiles of the share of observations with absolute monthly income growth below 1 and 5 percent, split by month. Black dots are averages over February-March and August-November. Panels (e)-(f) show the average 12 and 1-month growth rates over the sample period. All measures are pooled across cohorts.

Figure B.2: Fit: Distributions of k-year annual income growth rates.

Notes: See Figure 4.9. This figure shows the unconditional distribution of k-year annual growth rates.

[^0]: *We thank Jakob Langager Christensen, Christoffer Kinttof Øhlenschlæger, Emil Holst Partsch and Joachim Kahr Rasmussen for excellent research assistance. Financial support from the Economic Policy Research Network (EPRN), Denmark and the Danish Council for Independent Research in Social Sciences is gratefully acknowledged (FSE, grant no. 4091-00040 and 5052-00086B). Center for Economic Behavior and Inequality (CEBI) is a center of excellence at the University of Copenhagen, founded in September 2017, financed by a grant from the Danish National Research Foundation, Grant DNRF134. All errors are ours.
 ${ }^{\dagger}$ CEBI, Department of Economics, University of Copenhagen, Øster Farimagsgade 5, Building 35, DK-1353 Copenhagen K, Denmark. E-mail: jeppe.druedahl@econ.ku.dk. Website: sites.google.com/view/jeppe-druedahl/.
 ${ }^{\ddagger}$ Research Department, Statistics Norway, Akersveien 26, 0177 Oslo, Norway. E-mail: michael.r.graber@gmail.com. Website: michael-graber.com.
 ${ }^{\S}$ CEBI, Department of Economics, University of Copenhagen, Øster Farimagsgade 5, Building 35, DK-1353 Copenhagen K, Denmark. E-mail: thomas.h.jorgensen@econ.ku.dk. Website: www.tjeconomics.com.

[^1]: ${ }^{1}$ The ever-present shock, ϵ_{t}, is empirically irrelevant as we observe a large share of exact zero income growth rates.

[^2]: ${ }^{2}$ There is no closed-form expression for the bi-variate Gaussian cumulative distribution function, but efficient quadrature-based algorithms have been invented to evaluate it efficiently.
 ${ }^{3}$ Note, that we do not use any skewness moments. The reason is that our income process is not designed to match this aspect of the data.

[^3]: ${ }^{4}$ We use a combination of Nelder-Mead and BFGS numerical optimizers. First, we iterate with a Nelder-Mead optimizer for a maximum of 500 iterations. Second, we continue iterating with the BFGS optimizer with a gradient tolerance of $1 \mathrm{e}-8$.

[^4]: ${ }^{5}$ The data has also been used by Kreiner et al. (2014) and Kreiner et al. (2016) to study intertemporal shifting of income before and after a tax reform. We exclude the years 2008-2010 to avoid our estimates to be too affected by the financial crisis.
 ${ }^{6}$ In the sample period, the USD-DKK exchange rate has fluctuated in the range 5-7.

[^5]: ${ }^{7}$ See also Appendix Figures B.1c and B.1d.
 ${ }^{8}$ We solve the problem in eq. (4.1) numerically using a multi-start algorithm. We run the estimation algorithm 50 times, where each time we first draw 500 random parameter combinations, and then start a Nelder-Mead optimizer from the parameters associated with the lowest value of the objective function. Using the result of the Nelder-Mead optimizer, we start a BFGS optimizer to get the final results of each estimation. The estimates reported are from the estimation associated with the lowest value of the objective function.

[^6]: ${ }^{9}$ We have also experimented with allowing ρ to be negative. This improves the fit of autocovariances slightly leading to a reduction in the value of the objective function. In terms of economic theory, it is however unclear how a negative ρ should be interpreted. We have thus restricted attention to $\rho \geq 0$ in the main analysis.

