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Abstract

The elasticity of taxable income (ETI) parameter is a key quantity in empirical analysis of tax pol-
icy and labor supply. We examine when a commonly applied class of ETI estimands can be used
to learn about individuals’ ETI parameters and their (un)compensated elasticities of labor sup-
ply. We begin by providing necessary and sufficient conditions for these estimands to be given
a causal interpretation as a positively weighted average of heterogeneous ETI parameters. We
then apply these results to empirically analyze a reform of the Norwegian tax system that re-
duced the marginal tax rates on middle and high incomes. The estimated ETI parameters increase
steadily with income, meaning high-income individuals are more responsive to tax changes than
middle-income individuals. Next, we show how (un)compensated elasticities of labor supply can
be bounded directly from the ETI estimands, or point identified by combining these estimands
with external estimates of income effects. The bounds suggest the compensated and uncompen-
sated elasticities of high-income individuals are at least 0.4 and 0.2, respectively. By comparison,
the compensated elasticities of middle-income individuals are bounded between 0.1 and 0.3, while
their uncompensated elasticities are close to zero or negative. We move from partial to point iden-
tification by combining the estimated ETI parameters with estimates of income effects from lottery
winnings. The resulting point estimates suggest an (un)compensated elasticity of 0.1 (-0.05) for
middle-income individuals. The (un)compensated elasticity estimates increase steadily with in-
come to around 0.5 (0.35) for high-income individuals. These findings imply a substantial excess
burden of taxation, and that reducing the top-income tax rate would increase tax revenue.
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1 Introduction

The elasticity of taxable income (ETI) parameter measures how taxable income responds to
reforms that change the marginal tax rate. It is a key quantity in tax policy for assessing
how exogenous changes in tax rates will causally affect income and tax revenue (Auten and
Carroll, 1999). Also, it is often interpreted as a compensated elasticity of labor supply (Saez
et al., 2012), which can be used to assess the excess burden of taxation (Feldstein, 1995). The
goal of our paper is to show when and how a commonly applied class of ETI estimands can
be used to learn about individuals’ ETI parameters and their (un)compensated elasticities of
labor supply.

In Section 2 we provide necessary and sufficient conditions for the ETI estimands to be
given a causal interpretation as a positively weighted average of heterogeneous ETI param-
eters. This identification result is constructive, leading to empirical specifications and esti-
mators that can be easily implemented. These specifications differ from the ETI estimands
commonly used, which fail to satisfy the conditions for a causal interpretation when elastici-
ties are heterogeneous. A causal interpretation with heterogeneous elasticities requires both
a "saturated" specification that controls for past income non-parametrically, and no compari-
son of earnings responses between individuals who experience changes in marginal tax rates
of varying degrees.

The identification results in Section 2 guide our empirical analysis in Section 3 of a re-
form of the Norwegian tax system that reduced the marginal tax rates on middle and high
incomes. We find that commonly used ETI estimands that are causal only under constant
elasticities understate the average ETI parameter. The specifications that can be given a
causal interpretation produce estimates of an average ETI parameter across the income dis-
tribution of around 0.23. This average misses a great deal: the estimated ETI parameters
increase steadily with income, meaning high-income individuals are more responsive to tax
changes than middle-income individuals. For example, the ETI parameter at the median
income is only 0.1, while it is 0.35 at the 90th percentile. The variation in elasticities across
the income distribution is significant, both statistically and economically, and means that an
average elasticity is far from sufficient to predict how counterfactual changes in marginal tax
rates would affect aggregate earnings and tax revenue.

In Section 4, we show how (un)compensated elasticities of labor supply can be point or
partially identified from our preferred causal specification of the ETI estimands. The labor
supply model we consider allows for both income effects and elasticities that vary across the
income distribution. It lets us express the ETI estimands in terms of the (un)compensated
elasticities plus a bias term that would be observable in data if income effects were known
or could be estimated. This observation motivates and guides the analysis in the remainder
of the paper, where we consider different approaches to point or partially identify the labor
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supply elasticities and functionals of these elasticities, such as the excess burden of taxation.
The first approach we consider is to construct bounds using the Engel aggregation con-

dition, which implies that income effects are bounded between -1 and 0. The bounds sug-
gest the compensated and uncompensated elasticities of high-income individuals at the 90th
percentile are at least 0.4 and 0.2, respectively. By comparison, the compensated elasticity
of middle-income individuals at the median income is bounded between 0.1 and 0.3, while
their uncompensated elasticities are close to zero or negative. These bounds can be tightened
considerably by ruling out implausibly small and large income effects. Both the upper bound
on the compensated elasticities and the lower bound on the uncompensated elasticities then
become a lot more informative.

There are two ways to move from partial to point identification. One is to make stronger
assumptions. Gruber and Saez (2002) assumes that income and substitution effects do not
vary across the income distribution. The (un)compensated elasticity is then point identified.
We test this assumption and find that it is strongly rejected by the data.

Another possible way to achieve point identification, which we consider in Section 5,
is to combine the ETI estimands with external estimates of income effects. A number of
studies have estimated income effects from lottery winnings that create plausibly exogenous
variation in unearned income, holding fixed all other determinants of behavior, such as pref-
erences and wages.1 We follow this approach and use Norwegian data on lottery winnings
to estimate earnings and employment responses to exogenous changes in unearned income.
We show how these responses allow us to infer the income effects on the intensive margin
that we need to point identify the (un)compensated elasticities. The resulting point esti-
mates suggest an (un)compensated elasticity of 0.1 (-0.05) for middle-income individuals at
the median income. The (un)compensated elasticity estimates increase steadily with income
to around 0.5 (0.35) for high-income individuals at the 90th percentile.

In Section 6, we show that the findings in Section 5 imply a substantial excess burden of
taxation, and that reducing the top-income tax rate would significantly increase tax revenue.
We find that these conclusions contrast sharply with the results we obtain from conventional
calculations that use the common ETI estimand, ignore income effects, and assume constant
labor supply elasticities. The excess burden then becomes much lower, and the revenue-
maximizing top-income tax rate moves closer to the observed one.

Our paper contributes to a large set of studies that have used models of labor supply
to try to recover income and substitution effects from observational variation in unearned
income, wages, and tax rates. The models, data, and findings have been summarized and
critiqued in multiple review articles, including Blundell and Macurdy (1999), Keane (2011),
Killingsworth and Heckman (1986), Pencavel (1986), and Saez et al. (2012). As emphasized
in these reviews, there is no consensus about the size of income and substitution effects and

1See, for example, Cesarini et al. (2017), Golosov et al. (2024), and Imbens et al. (2001).

2



how they vary across the income distribution. As a result, it is difficult to draw credible
conclusions about parameters that depend on these income and substitution effects, such as
the excess burden of taxation and the revenue-maximizing tax rates.

A key reason for the lack of consensus is that it has been difficult to separately iden-
tify income and substitution effects without strong assumptions on functional form and the
distribution of unobservables. Our paper shows how to construct informative bounds on
(un)compensated elasticities from variation in take-home pay that arises from tax reforms.
We also show how income and substitution effects can be point identified by combining the
variation in take-home pay that arises from tax reforms with plausibly exogenous changes
in unearned income. By doing so, our paper offers credible evidence on income and substi-
tution effects, how they vary across the income distribution, and their implications for the
excess burden of taxation and the revenue-maximizing top-income tax rate.

Our paper also contributes to the ETI literature which analyzes how taxable income re-
sponds to reforms that change the marginal tax rates.2 We extend the usual identification
argument to allow for heterogeneity in the individuals’ ETI parameters. Our necessary and
sufficient conditions offer a blueprint for estimating ETIs while allowing for heterogeneous
elasticities.

A related paper is Kumar and Liang (2020) who consider the causal interpretation of
the ETI estimand without covariates, under the assumption that the tax system is randomly
assigned across individuals. They show that this estimand is generally not equal to a partic-
ular weighted average of individual ETI parameters, unless the instrument is valid and the
individual ETI parameters are homogeneous.

Our results about the ETI estimand differ in several ways. First, we consider the causal
interpretation of the ETI estimand with covariates and do not assume that the tax system is
randomly assigned. The inclusion of covariates in the theoretical results is important, since
empirical work tries to flexibly control for individual characteristics such as past income.
Second, we provide sufficient and necessary conditions for the ETI estimand to recover any
positively weighted average of individual ETI parameters. This is arguably a minimal re-
quirement for the ETI estimand to be an interesting quantity, but it is not sufficient. We
therefore strengthen our result by showing the causal interpretation of the ETI estimand as
a specific positively weighted average of individual ETI parameters. Third, we consider the
bias of the ETI estimand due to income effects and how it can be corrected for by constructing
bounds, invoking auxiliary assumptions, or using additional data.

Our paper is also related to a set of empirical studies that have used lottery winnings
to estimate wealth and income effects (Bulman et al., 2021; Cesarini et al., 2017; Golosov et

2Notable contributions to this literature include Auten and Carroll (1999), Burns and Ziliak (2017), Feldstein
(1995), Gruber and Saez (2002), and Kleven and Schultz (2014). See Saez et al. (2012) for a review and Neisser
(2021) for a meta-analysis.
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al., 2024; Imbens et al., 2001 and Picchio et al., 2018). To measure how lottery winnings are
allocated over time, most of these studies rely on either the capitalization or the annuitiza-
tion approach. In contrast, our rich administrative data allows for imputing consumption
and savings over time (Eika et al., 2020), which means we can measure unearned income in
each period without relying on additional assumptions. Thus, our paper offers credible ev-
idence on income effects and how they vary across the income distribution without relying
on assumptions on how households allocate their wealth over time.

2 Interpretation of ETI estimands

We now introduce and analyze a class of commonly used ETI estimands. We first describe
the research design and data that form the basis for these estimands. We then discuss the
causal interpretation of these estimands, providing necessary and sufficient conditions for
causality.

2.1 Research design

Figure 1 describes the research design and the data that it will use. The figure illustrates that
the tax system changed from T0 to T1 in 2006, which affected the marginal tax rates on in-
comes above Ȳ . The reform cohorts (G = 1), which consist of observations from 2003-2007,
experienced the actual reform in 2006. The placebo cohorts (G = 0), consisting of obser-
vations from 1998-2002, experience no change in the tax system. For each cohort type, we
divide the data into a pre-period consisting of the first three years (event time t = −3,−2,−1)
and a post-period covering the last two years (t = 0, 1).

We observe the earnings Y and marginal tax rates τ for every individual at each event
time:

τt = T ′
0(Yt) + 1[t ≥ 0]G

(
T ′
1(Yt)− T ′

0(Yt)
)
,

where T ′
d denotes the derivative of tax function Td. Thus, the marginal tax rate of an individ-

ual depends on her earnings Y and whether she faces the old (T0) or the reformed tax system
(T1).

To address the simultaneity between marginal tax rates and earnings, the empirical ETI
literature uses simulated instruments, defined as the predicted percentage change in net-of-tax
rates because of the reform:

Z ≡ log

(
1− T ′

1(X)

1− T ′
0(X)

)
, (1)

where X is earnings at event time −3.
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Figure 1: Anatomy of the research design

calendar time

event time (t)

98 99 00 01 02 03 04 05 06 07

−3 −2 −1 0 1 −3 −2 −1 0 1

Placebo cohorts (G = 0) Reform cohorts (G = 1)

Old tax system (T0) New tax system (T1)

Pre-period Post-period Pre-period Post-period

∆y and ∆ NTR ∆y and ∆ NTR

Y−3 Y−2 Y1 Y−3 Y−2 Y1

τ−2 τ1 τ−2 τ1

X and Z X and Z

Notes: The figure presents the research design, illustrates the timing of the reform, and introduces notation.

The variable Z can take more than two values. It not only captures that the reform
changes the marginal tax rates of some (treatment group with Z ̸= 0), but not all individuals
(control group with Z = 0), but also that the magnitude of the change may differ across
earnings levels. Hence, treatment intensity can vary across treated individuals.

2.2 ETI estimands and regression model

A possible estimand for the elasticity of taxable income (ETI) parameter is the difference-
in-differences estimand that compares the earnings- and marginal tax rate growth of the
treatment group to that of the control group:

βDD ≡

≡RF (Earnings DiD)︷ ︸︸ ︷
E[∆y | G = 1, Z ̸= 0]− E[∆y | G = 1, Z = 0]

E[∆ NTR | G = 1, Z ̸= 0]− E[∆ NTR | G = 1, Z = 0]︸ ︷︷ ︸
≡FS (Net-of-tax rate DiD)

,

where ∆y ≡ log Y1 − log Y−2, and ∆ NTR ≡ log(1− τ1)− log(1− τ−2).
A concern with this estimand is that because the reform changed marginal tax rates on

incomes above Ȳ , the treated group has higher initial incomes than the control group. Thus,
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if individual income growth depends on initial income, either due to mean reversion or
differential underlying income growth, parallel trends are unlikely to hold (Weber, 2014).
To address these concerns, the literature uses the placebo cohorts to estimate the difference
in earnings and net-of-tax rate growth between the treatment and control groups over the
period when no tax reform occurred. The triple difference estimand βDDD subtracts these
placebo differences from the reform ones:

βDDD ≡

Earnings DiD︷︸︸︷
RF −

Placebo earnings DiD︷ ︸︸ ︷(
E[∆y | G = 0, Z ̸= 0]− E[∆y | G = 0, Z = 0]

)
FS︸︷︷︸

Net-of-tax rate DiD

−
(
E[∆ NTR | G = 0, Z ̸= 0]− E[∆ NTR | G = 0, Z = 0]

)︸ ︷︷ ︸
Placebo net-of-tax rate DiD

. (2)

The triple difference estimand in (2) is nested by the following two-stage least squares
(TSLS) regression model:

∆y = αy
0G+ β∆ NTR +f(X;αy) + uy, (3)

∆ NTR = αNTR
0 G+ αGh(Z) + f(X;αNTR) + uNTR, (4)

where f is a function that is linear in parameters, and h is some function chosen by the
researcher. We refer to the coefficient β as the elasticity of taxable income (ETI) estimand.

The TSLS model nests the triple differences model in equation (2) when h(Z) is binary
(equal to 1[Z ̸= 0]) and f is a constant plus the indicator variable 1[X ≥ Ȳ ]. However,
the TSLS model allows the researcher to choose a rich specification of f , thereby controlling
flexibly for differential earnings- and tax rate growth, and to use variation in the intensity
of treatment when the simulated instrument takes more than two values. The empirical ETI
literature typically chooses h(Z) = Z and specifies f to be a polynomial or spline function
of X (see, e.g., Auten and Carroll (1999), Gruber and Saez (2002), and Kleven and Schultz
(2014)).

2.3 Potential earnings model

To consider the causal interpretation of the ETI estimand (defined by equations (3) and (4)),
it is necessary to introduce a potential earnings model that links the ETI estimand and the
data to individual ETI parameters.

Given the tax systems T0 and T1, we let Yt(d) denote period t potential earnings under
tax system Td. Similarly, τt(d) ≡ T ′

d(Yt(d)) denotes their potential marginal tax rate and
NTRt(d) ≡ log(1 − T ′

d(Y (d))) their potential (log of net-of-) marginal tax rate. The potential
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outcomes map to observed outcomes through,

Yt = 1[Z = 0]Yt(0) + 1[Z ̸= 0] [(1−G)Yt(0) +GYt(1)] , (5)

NTRt = 1[Z = 0] NTRt(0) + 1[Z ̸= 0] [(1−G) NTRt(0) +G NTRt(1)] , (6)

for each t ≥ 0, and Yt = Yt(0), NTRt = NTRt(0) for t < 0.
Following Saez et al. (2012), we assume the potential earnings function is,

log Yt(NTR, d) = ζ × NTR +νt(d), (7)

where the parameters νt(0) and νt(1) can vary freely across individuals and ζ is the individ-
ual’s ETI parameter.3 Unless otherwise noted, ζ can also vary freely across individuals. The
specification in (7) allows the tax system to affect earnings both through marginal tax rates
NTR and other channels ν.

It is useful to consider a set of assumptions commonly invoked to give instrumental vari-
ables estimands a causal interpretation, which imposes additional restrictions on the poten-
tial outcomes. Throughout the paper, we invoke the following common trends assumption
to recover the "reduced form" effects of the reform on earnings and the "first stage" effects of
the reform on the marginal tax rates:

Assumption 1 (Common trends). For each G,X , average earnings and marginal tax rates absent
the tax reform changes according to

E [∆y(0) | G,X] = λyG+ fy(X), (8)

E [∆ NTR(0) | G,X] = λNTRG+ fNTR(X), (9)

where the functions fy and fNTR are unrestricted.

Assumption 1 states that average growth in earnings (marginal tax rates) conditional on
initial income X and cohort G would have changed according to equation (8) (equation (9))
in the absence of the tax reform. The key restriction is that there is no interaction between G

and X in the average growth in earnings (or marginal tax rates) in the absence of the reform.
It means that the aggregate growth due to calendar-time effects (for example, due to business
cycles) is allowed to vary freely over time, and that any idiosyncratic growth can vary freely
across individuals depending on their initial income X .

Our second assumption is an exclusion restriction, which implies that individual earn-
ings are affected by the tax reform only through its effects on marginal tax rates.

3The log specification implicitly assumes no extensive margin responses to the tax reform. In Section 3, we test
this assumption empirically and find that the reform we consider did not affect extensive margin employment
decisions.
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Assumption 2 (Exclusion restriction). νt(0) = νt(1) with probability one.

As shown below, this restriction implies no income effects, an assumption we will relax in
Section 4.

Lastly, we consider the assumption that the tax reform either weakly increases (or de-
creases) the marginal tax rates for all:

Assumption 3 (Monotonicity). P(NTR(1) ≥ NTR(0)) = 1 or P(NTR(1) ≤ NTR(0)) = 1.

This assumption is common in the program evaluation literature when allowing for treat-
ment effect heterogeneity. It is typically necessary to ensure that standard IV estimands
reflect positively weighted averages of individual treatment effects: see, e.g., Imbens and
Angrist (1994).

2.4 Necessary and sufficient conditions for the ETI estimand to be causal

We now provide a characterization of the ETI estimand in terms of individual ETIs ζ under
different choices of f and h, while maintaining the IV assumptions 1 - 3. A key goal is to
understand when the ETI estimand β can(not) be given a causal interpretation as a positively
weighted average of individual ETIs ζ:

Definition 1 (Causal ETI estimand). The ETI estimand β is causal if, for any distribution of
individual ETIs ζ and initial income X , the maintained assumptions ensure that β = E [ω × ζ] for
some ω that satisfies E[ω] = 1 and P(ω ≥ 0) = 1.

The requirement that the weights sum to 1 ensures that a causal ETI estimand recovers ζ

when ζ is constant across individuals, while the non-negative weights are necessary to en-
sure that a causal ETI estimand is contained in the support of ζ. For example, allowing for
negative weights could mean that E[ω × ζ] is negative even if ζ is always positive.

Proposition 1 provides necessary and sufficient conditions for the ETI estimand to be
causal:

Proposition 1. Suppose Assumptions 1 - 3 hold. Then, the ETI estimand β is causal if and only if
h(Z) is binary and f is unrestricted over the support of X .

While we refer to Appendix A for a formal proof, it is useful to observe the three distinct
reasons why an ETI estimand may fail to be causal.

First, if h(Z) is non-binary, the ETI estimand will compare the earnings responses be-
tween individuals who experience (non-zero) changes in marginal tax rates of varying de-
grees. These comparisons could lead to negative weights if there is heterogeneity in the ETI
parameters.4 In contrast, if h(Z) is binary, the ETI estimand only compares earnings changes

4Callaway et al. (2025) formalizes the problem of variable treatment intensity in difference-in-differences,
and shows that strong auxiliary assumptions are needed (e.g., constant effects) to give the estimate a causal
interpretation.
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between individuals treated by the reform (Z ̸= 0) and untreated individuals (Z = 0), who
do not experience any change in marginal tax rates. These comparisons will not produce
negative weights, even if the elasticities are heterogeneous.

Second, if f is insufficiently flexible to capture how counterfactual earnings and marginal
tax rate growth vary with X given G, then the excluded instrument Gh(Z) in the first stage
(4) may be correlated with the error term uy in the outcome equation (3). As a result, the ETI
estimand cannot be given a causal interpretation, even when ζ is homogeneous.

If ζ is heterogeneous, the specification of f must also be flexible enough to ensure that it
reproduces the conditional mean of the instrument, E[Gh(Z) | G = 1, X] = f(X). Specifica-
tions of f that are unrestricted are saturated in X and will always satisfy this condition.5

2.5 The causal interpretation of the ETI estimand

It is important to emphasize that the criterion of an estimand to be causal in Definition 1 is
a weak one. Thus, being causal may be necessary for the ETI estimand to be an interest-
ing quantity, but it is not sufficient. For example, the definition does not preclude that all
the weight is assigned to a single person with a negative ζ, while the rest of the popula-
tion receiving zero weight have positive ζ. The following corollary strengthens the result in
Proposition 1 by showing the causal interpretation of the ETI estimand as a specific positively
weighted average of individual ETI parameters ζ.

Corollary 1. Suppose Assumptions 1 - 3 hold, that f is flexible and let h(Z) = 1[Z ̸= 0]. Then, the
ETI estimand β is causal and equals:

β =

K∑
k=k0

J∑
j=1

ωk,j × E[ζ | G = 1, X = xk, ϕ = ϕj ]︸ ︷︷ ︸
group-specific average ETI

. (10)

where ϕ ≡ NTR(1) − NTR(0), {ϕ1, ..., ϕJ} is the support of ϕ | ϕ ̸= 0, {xk0 , ..., xK} is the support
of X | X ≥ Ȳ , and the weights,

ωk,j =
V ar(G | X = xk)P(X = xk, ϕ = ϕj | G = 1)ϕj∑K

l=k0
V ar(G | X = xl)

∑J
m=1 P(X = xl, ϕ = ϕm | G = 1)ϕm

≥ 0, (11)

are positive, and sum to one.

The corollary shows that the ETI estimand recovers a specific positively weighted average
of group averages of ζ. The groups are mutually exclusive and defined by initial income X

and the reform’s effect on their marginal tax change ϕ. Conditional on initial income X = x,

5Blandhol et al. (2022) show that the only specifications of the TSLS estimand that have a LATE interpretation
are saturated specifications that control for covariates non-parametrically.
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groups are weighted according to their size and how large changes in the marginal tax rate
ϕ they experience.

The ETI estimand aggregates the groups’ average ETI parameters across initial income in
proportion to how dispersed observations with X = x are across cohorts G, as measured by
V ar(G | X). These weights resemble how linear regression aggregates average treatment
effects across covariates, and can be viewed as efficiency weights (See e.g., Angrist (1998)).

We now consider the special case when the ETI parameters ζ are assumed to be homo-
geneous across individuals. The following result shows that in this case, the ETI estimand
recovers ζ provided f is unrestricted, thereby formalizing the identification argument im-
plicit in the existing ETI literature:

Corollary 2. Suppose Assumptions 1 and 2 are true, that ζ is constant across individuals, and that
f is unrestricted over the support of X . Then, β = ζ.

The result is similar to Proposition 6 in Blandhol et al. (2022). Their linearity Assumption
(LIN) is satisfied because of our Assumption 1, which ensures that the conditional mean of
∆y(0) is linear in X .

2.6 Quantifying how the elasticities vary across the income distribution

Corollary 1 showed that the ETI estimand β recovers a positively weighted average of in-
dividual ETI parameters ζ across groups defined by initial income X and marginal tax rate
response ϕ. An important question for tax policy is how the ETI varies across the income dis-
tribution X . To analyze this question, we introduce the local ETI estimand β(x), as defined
by

β(x) ≡

actual income growth︷ ︸︸ ︷
E[∆y | G = 1, X = x]−

counterfactual income growth︷ ︸︸ ︷(
λ̂y
0 +

K∑
k=k0

λ̂y
k1[xk = x]

)
E[∆ NTR | G = 1, X = x]︸ ︷︷ ︸

actual tax rate growth

−
(
λ̂NTR
0 +

K∑
k=k0

λ̂NTR
k 1[xk = x]

)
︸ ︷︷ ︸

counterfactual tax rate growth

, (12)

for each x in the support of X | X ≥ Ȳ , where the coefficient vector λ̂y (λ̂NTR) is obtained by
regressing ∆y (∆ NTR) on G and a set of dummies for each value of X for those with GZ = 0.

Intuitively, the estimand exploits that Assumption 1 implies the earnings and marginal
tax rate growth among untreated (GZ = 0) individuals can be used to recover the counter-
factual growth of the treated (GZ ̸= 0) individuals. Subtracting the counterfactual growth
from the treated individual’s actual growth yields their earnings response and the changes
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in their marginal tax rate due to the tax reform. Our next result shows that the local ETI
estimand β(x) is causal under the same assumptions that were necessary to give the ETI
estimand β a causal interpretation:

Proposition 2. Suppose Assumptions 1 - 3 hold. Then, the local ETI estimand β(x) is causal and
equals:

β(x) =
J∑

j=1

weights reflecting group size and marginal tax rate effects︷ ︸︸ ︷
P(ϕ = ϕj | G = 1, X = x)ϕj∑J
l=1 P(ϕ = ϕl | G = 1, X = x)ϕl

×E[ζ | G = 1, X = x, ϕ = ϕj ]︸ ︷︷ ︸
group-specific average ETI

, (13)

for each x ∈ {xk0 , ..., xK}. The weights are positive and sum to one.

Proposition 2 shows that the local ETI estimand β(x) recovers a positively weighted av-
erage across the same group-specific averages of ζ as in Corollary 1.6 However, only groups
with initial income X = x receive positive weights. Among the groups with X = x, the local
ETI estimand weights the groups according to their size P(ϕ = ϕk | G = 1, X = x) and how
much their marginal tax rates are affected by the reform ϕ.

3 Estimating elasticities of taxable income

We now apply the identification results from Section 2 to analyze a reform of the Norwegian
tax system that reduced the marginal tax rates on middle and high incomes.

3.1 The Norwegian tax system and the 2006 tax reform

Taxation of labor income. The Norwegian personal income tax combines a flat tax on gen-
eral income with a progressive surtax on personal income.7 General income consists of
both labor and capital income. Labor income includes wages, salaries, and most employer-
provided benefits. General income is taxed at a flat rate on net income, after allowable de-
ductions. Deductions – such as the wage-earner deduction, the personal allowance, and
selected pension and interest deductions – apply exclusively to the general-income tax base.

Personal income is defined as the sum of labor and pension income. It is subject to a
7.8 percent social security tax, which finances health and pension entitlements.8 Personal
income is also subject to a progressive surtax consisting of several income brackets with

6The expression is similar to equation (23) in Mogstad and Torgovitsky (2024) with the additional restriction
that the potential earnings functions are linear. See their discussion of how it relates to the average causal response
from Angrist and Imbens (1995).

7See Mogstad et al. (2025) for a detailed discussion of the Norwegian tax system and labor market.
8The rate varies depending on the source of the income, but is 7.8 percent for wage earners, which is the focus

of our paper.
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increasing marginal tax rates. The overall marginal tax rate on labor income thus combines
the flat general income tax, the employee social security contribution, and the progressive
surtax. Throughout the paper, we refer to the corresponding tax base as earnings.

The 2006 tax reform. We study a tax reform that significantly reduced the surtax on middle-
and high-income earners. The reform was partially introduced in 2005 and took full effect on
January 1st, 2006. Figure 2 illustrates the marginal tax rate changes by plotting the marginal
tax rates by personal income before (2004) and after (2006) the tax reform was fully imple-
mented.9 The graph shows that the reform reduced marginal tax rates on medium and espe-
cially high labor incomes: the surtax rates fell from 13.5 and 19.5 percent to 9 and 12 percent,
respectively. This means that from 2004 to 2006, the marginal tax rate in the (second) highest
bracket was reduced from 55.3 to 47.8 (49.3 to 44.8) percent. The sizable rate cuts meant that
most workers in the upper half of the income distribution experienced large reductions in
their marginal tax rates.

Figure 2: Marginal tax rates in 2004 and 2006
Notes: This figure shows the marginal tax rates that apply to different income tax brackets in 2004 and 2006. The
tax bracket thresholds are measured in 2018 NOKs.

9Throughout the paper, we measure all monetary values in 2018 NOKs.
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3.2 Data and sample

Our empirical analysis is based on several administrative data sources, which we link using
unique identifiers for individuals and households. This results in a panel dataset cover-
ing the full Norwegian population in the period 1995–2018. The dataset includes detailed
information from income tax returns as well as individual characteristics such as age, sex,
educational attainment, marital status, and number of children. Marginal tax rates are con-
structed by using the same tax simulation model as Statistics Norway and the Norwegian
Ministry of Finance (see Vattø (2020)).

Our baseline sample includes individuals aged 25 to 61 with wage earnings as their pri-
mary source of labor income. We exclude students and individuals receiving pensions or
unemployment benefits.

Estimation sample. To explain how our estimation sample is constructed, it is useful to
recall our discussion of the ETI estimands in Section 2. There, we showed that the ETI es-
timand compares how earnings and marginal tax rates evolve over periods when the tax
system changed (2003 vs 2006) with how they evolve over periods when the tax system did
not change (1999-2002). For each individual in the reform cohorts, we constructed one earn-
ings difference by subtracting earnings in 2003 from earnings in 2006, and similarly for the
marginal tax rates. Correspondingly, for each individual in the placebo cohorts, we con-
structed one earnings difference by subtracting earnings in 1999 from earnings in 2002.

It turns out that other year differences can also be used to analyze the reform. Because
the reform was already (partly) implemented from January 1st, 2005, the differences between
2002 and 2005 and between 2004 and 2007 also capture how earnings and marginal tax rates
evolve over periods where the tax system changed. Similarly, the differences between 2000
and 2003 and between 2001 and 2004 capture how earnings and marginal tax rates evolve
when the tax system remained constant.

Our empirical analysis includes all six three-year differences. We refer to the differences
over periods where the tax system changed (2002–2005, 2003–2006, and 2004–2007) as the
reform differences. The differences over periods with no changes in the tax system (1999-
2002, 2000–2003, and 2001–2004) are referred to as the placebo differences.

To obtain our estimation sample, we start from our baseline sample and construct the
reform and placebo differences described above. We impose three additional restrictions.
First, we exclude observations with initial income below 275,000 (15th percentile). Excluding
individuals with low incomes is common practice in the literature, since mean reversion
tends to be most pronounced at the bottom of the income distribution (see Saez et al., 2012).

Second, we exclude observations with initial income above 950,000 (97th percentile). This
restriction ensures that placebo differences are not affected by a top-income tax bracket in-
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troduced in 2000 for very high incomes (above 1,100,000).
Third, we exclude placebo differences with initial income between 375,000 and 450,000.

This is done to minimize the extent to which placebo differences are affected by small year-
to-year changes in tax bracket thresholds. Our estimates barely move if we include these
individuals in the estimation sample.

Our resulting estimation sample contains about 4 million observations and 1.1 million
individual wage earners. Summary statistics for our baseline and estimation samples are
provided in Table 4 in Appendix B.

3.3 Estimates of average ETIs

To implement the ETI estimands, we pool the reform and control differences and estimate
the model in equations (3) and (4) using two-stage least squares. Our specification includes
separate dummies for each of the six three-year differences, and interacts the simulated in-
strument h(Z) with a dummy G that equals 1 if the observation is a reform difference and
zero if it is a placebo difference. Table 1 reports the resulting estimates under different choices
of h and f .

The first column of Panel A reports estimates from our preferred specification, which
puts h(Z) = 1[Z ̸= 0] and controls for initial income using a full set of percentile dum-
mies in X . The first stage estimates reported in the first row are precise and show that the
reform increases the marginal net-of-tax rate by around 5.3 percent. The F-statistic on the ex-
cluded instrument is above 70,000, indicating that the first stage is very strong. The reduced
form, reported in the second row, is also precisely estimated and shows that the tax reform
increases earnings by 1.2 percent.

The ETI estimate, reported in the third row, equals 0.233 (with a standard error of 0.012).
The specification that produces this estimate controls for initial income non-parametrically
and makes no comparisons of earnings responses between individuals who experience (non-
zero) changes in marginal tax rates of varying degrees. Thus, it can be interpreted as a
positively weighted average of ETI parameters under the assumptions in Proposition 1. If
the ETI parameters are constant across individuals, the estimate implies that a ten percent
increase in the marginal net-of-tax rate raises earnings by 2.3 percent.

The second and third columns of Panel A report estimates of specifications that fail to
satisfy the conditions for a causal interpretation of the ETI estimand. The second column
corresponds to the triple difference estimand in (2). It correctly specifies the instrument,
but does not control flexibly for initial income, resulting in an estimate that understates the
average ETI parameter.

The third column reports estimates from a commonly used ETI estimand that is causal
only under the assumption of constant ETI parameters. It controls flexibly for initial income
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Table 1: Main results

Panel A. Specification of income controls f : dummies for X in bins.

Instrument Binary: h(Z) = 1[Z ̸= 0] Continuous: h(Z) = Z

Income bins Percentiles Above/below Ȳ Percentiles

First stage
Coef. 0.0526 0.0503 0.3045

SE 0.0002 0.0002 0.0017

Reduced form
Coef. 0.0122 0.0100 0.0490

SE 0.0006 0.0005 0.0039

ETI
Coef. 0.2325 0.1996 0.1609

SE 0.0121 0.0109 0.0133

Panel B. Specification of income controls f : linear splines.

Instrument Binary: h(Z) = 1[Z ̸= 0] Continuous: h(Z) = Z

Spline knots Deciles Above/below Ȳ Deciles

First stage
Coef. 0.0527 0.0672 0.3009

SE 0.0002 0.0002 0.0016

Reduced form
Coef. 0.0122 0.0111 0.0481

SE 0.0006 0.0005 0.0038

ETI
Coef. 0.2306 0.1656 0.1599

SE 0.0118 0.0076 0.0131
a The table contains two-stage least squares estimates of β from the model in (3) and (4) under different
choices of h and f . All regressions include time dummies for each year and are weighted by initial
income X .

but specifies the instrument as h(Z) = Z. This means that it compares earnings responses
between individuals who experience (non-zero) changes in marginal tax rates of varying
degrees. The resulting estimate is equal to 0.161 and significantly understates the average
ETI parameter, both statistically and economically. Thus, we can reject the assumption of
homogeneous ETI parameters.

Panel B of Table 1 reports estimates of specifications that control for initial income through
splines instead of dummies for income bins. We report these estimates because spline speci-
fications are frequently used in the ETI literature. We find that whether one flexibly controls
for income through splines or income bins does not materially affect the results. We conclude
that when the instrument is binary, and the income controls f are reasonably flexible, the ETI
estimates are robust to the exact specification of f .
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Table 2: Placebo responses

Instrument Binary: h(Z) = 1[Z ̸= 0] Continuous: h(Z) = Z

Income bins Percentiles Above/below Ȳ Percentiles

Placebo reduced form
Coef. 0.00002 -0.00002 -0.06190
SE 0.00001 0.00001 0.02200

Placebo ETI
Coef. 0.00042 -0.00047 -0.20340
SE 0.00011 0.00011 0.07220

a This table presents placebo estimates of the reduced form from the model in equations (3) and (4). The placebo
ETI is the reduced form divided by the actual first stage estimate from the corresponding specification in Table 1.

One possible concern with the validity of the estimates in Table 1 is that Assumption
1 (Common trends) may not hold. To address this concern, we re-estimate the model in
equations (3) and (4) on the placebo differences, treating one of the placebo differences as if
it were a reform difference. We perform this procedure for all three placebo differences and
report the averages in Table 2.

The resulting placebo reduced form, reported in the first column, is indistinguishable
from zero. To obtain a placebo ETI estimate, one would need to divide the placebo reduced
form by a first stage. However, because the placebo differences are not affected by any tax
reform there is no first stage. We instead divide the placebo reduced form by the first stage
estimate from the corresponding specification in Table 1. The resulting placebo ETI estimate
is multiple orders of magnitude smaller than the actual ETI estimate.

Table 3: Employment responses

Instrument Binary: h(Z) = 1[Z ̸= 0] Continuous: h(Z) = Z

Income bins Percentiles Above/below Ȳ Percentiles

Employment response
Coef. 0.00060 0.00001 0.00270
SE 0.00010 0.00010 0.00070

a This table presents employment estimates of the reduced form of the model in equations (3) and (4). The es-
timates are obtained by including unemployed individuals and replacing the outcome variable with a binary
variable that is equal to one if the individual is employed.

Another concern with the estimates in Table 1 is that the tax reform could induce ex-
tensive margin responses. To address this concern, we estimate the reduced form of the
regression model in equations (3) and (4) on a sample that includes the unemployed, where
we have replaced the outcome with a binary variable equal to one if the individual works
and zero otherwise. Table 3 reports the resulting estimates. It shows that the tax reform had
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no meaningful impact on employment.

3.4 Estimates of ETIs across the income distribution

We now turn to assessing how the estimated ETI parameters vary across the distribution of
initial income. We implement the estimator for β(x) in two steps. The first step estimates
the counterfactual income and tax rate growth in equation (12) using 100 percentile bins in
X , while the second step estimates the numerator and denominator separately using a local
regression.

Panel (a) of Figure 3 plots the resulting estimates. We find that the (nonlocal) ETI es-
timand considered above masks considerable heterogeneity. The average ETI parameter is
less than 0.1 for incomes around 400,000 NOKs (median), increases steadily to around 0.35
for incomes close to 700,000 NOKs (90th percentile), and exceeds 0.6 for incomes around
900,000 NOKs (95th percentile). The variation in elasticities across the income distribution
is significant, both statistically and economically, and means that the (weighted-) average
elasticity recovered by the causal ETI estimand β is far from sufficient to assess how changes
in marginal tax rates affect earnings and tax revenue.

(a) Local ETI.
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(b) Local placebo ETI.
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Figure 3: Local ETI estimates.
Notes: The figure plots actual and placebo estimates of the local ETI across the income distribution. Panel (a) plots
the actual local ETI obtained by first estimating the counterfactual income and tax rate growth using 50 quantile
bins of X , then estimating the numerator and denominator of equation (12) separately using a local regression.
Panel (b) reports local placebo ETIs, obtained by estimating the numerator of equation (12) on the placebo cohorts
only, sequentially treating each cohort as “treated,” using the remaining two as controls, and averaging the
resulting estimates. The local placebo ETI estimates are obtained by dividing these placebo reduced forms by
the actual first stage from Panel (a). 90 percent confidence intervals are shown, with standard errors obtained by
bootstrapping the entire estimation procedure using 500 replications.
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Panel (b) of Figure 3 assesses the common trend assumption behind the local ETI esti-
mand by estimating a placebo version of the local ETI estimand following the same steps
as for the placebo estimates reported in Table 2. The placebo estimates remain close to zero
throughout the income distribution. Figure 10 of Appendix B plots the local employment
ETIs, which also remain indistinguishable from zero throughout the income distribution.

4 Using ETIs to learn about labor supply elasticities

We now use the ETI estimates from above to learn about labor supply elasticities.

4.1 A labor supply model

We consider a labor supply model where workers have convex preferences over K consump-
tion goods Ck and L margins of labor supply Yl. The L margins of labor supply produce
pre-tax income Y according to Y = F (Y1, ..., YL), which is concave and strictly increasing in
each of its arguments.

Multiple dimensions of labor supply allow for the possibility that individuals can af-
fect their earnings through many different choices, including hours of work, effort on the
job, and firm and occupation choices. Introducing multiple consumption goods is useful
for computing total marginal tax rates, as it accommodates differential taxation—such as
varying value-added tax rates—across goods.

If the income tax system were linear with marginal tax rate τ and transfer R, the individ-
ual’s utility maximization problem would be,

max
C1,...,CK ,Y1,...,YL

U(C1, ..., CK , Y1, ..., YL) subject to
K∑
k=1

(1 + τk)PkCk ≤ I,

I = (1− τ)Y +R+B, and Y = F (Y1, ..., YL),

(14)

where B is unearned income, I is consumption expenditure, and Pk and τk are the price of
and tax on the consumption good k, respectively.

As noted by Feldstein (1999), the revenue- and efficiency effects of taxation typically de-
pend on how tax policy affects earnings, but not on the specific margins through which
individuals adjust their behavior. We therefore focus on the earnings choice, which – sup-
pressing its dependence on prices and consumption tax rates – can be written as,

Y u(τ,R+B) ≡ F (Y u
1 (τ,R+B), ..., Y u

L (τ,R+B)), (15)

where Y u
l (τ,R + B) is the optimally chosen l-th labor supply component. This earnings
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function Y u(τ,R+B) allows for defining the standard labor supply elasticities,

εu ≡ ∂Y u

∂1− τ

1− τ

Y u
, η ≡ (1− τ)

∂Y u

∂(R+B)
∈ [−1, 0], εc ≡ εu − η ≥ 0, (16)

where εu and εc denote the uncompensated and compensated earnings elasticity, respec-
tively, η denotes the income effect, and the relationship between (un)compensated elastici-
ties and the income effect is given by the Slutsky equation. The restriction that η ∈ [−1, 0]

follows from the Engel aggregation condition by assuming that consumption and leisure are
normal goods.

In reality, the Norwegian tax system is piecewise linear. To accommodate this feature, we
follow the argument of Hall (1973): convex preferences ensure that individuals behave as if
they were facing the following linear budget constraint,

I = (1− τ(d))Y +R(d) +B for d = 0, 1, (17)

where

τ(d) = T ′
d(Y (d)), R(d) = T ′

d(Y (d))Y (d)− Td(Y (d)), (18)

even if the actual tax system Td is non-linear. This argument implies that the potential earn-
ings function Y (τ(d), d) in equation (3) can be viewed as the solution to the worker’s labor
supply problem, subject to the linear budget constraint defined in equation (17):

Y (τ(d), d) = Y u(τ(d), R(d) +B) for d = 0, 1.

4.2 Recovering labor supply elasticities

The previous subsection forged a tight link between the potential earnings function and the
model of labor supply. Having established this link, we now use the ETI estimates (and other
specific features of the data) to draw inferences about labor supply elasticities.

We first consider the case with no income effects, a restriction typically imposed in the
models used to interpret ETI estimands. Our next result shows that this model restriction
ensures that the exclusion restriction in Assumption 2 is satisfied and, therefore, lets us in-
terpret the individual ETI parameters ζ as compensated earnings elasticities εc:

Proposition 3. If there are no income effects (η = 0 across all individuals), then Assumption 2 is
satisfied and ζ = εc for each individual.

An immediate implication of the result is that the ETI estimands β and β(x) in Section 2
recover positively weighted averages of compensated earnings elasticities, provided the in-
strument is binary and the specification of the income controls f is unrestricted.
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Allowing for income effects violates the exclusion restriction in Assumption 2, since the
tax reform can then affect labor supply both through changes in both the marginal and the
average tax rates. The following proposition clarifies the identification problem that arises
due to income effects. It expresses the compensated elasticities εc and the uncompensated
elasticities εu in terms of the local ETI estimands β(x) and a bias term that would be observ-
able in data if the income effects were known or could be estimated:

Proposition 4. Suppose that Assumption 1 holds, there is no bracket switching, and that εc and η

are homogeneous among individuals with the same X . Then, for any x ≥ Ȳ :

εc(x) = β(x) +B(x)η(x), (19)

εu(x) = β(x) + (B(x)− 1)η(x). (20)

where B(x) is estimable and equal to:

B(x) ≡
E
[
T1(Yt)−T0(Yt)
(1−T ′

1(Yt))Yt
| G = 1, X = x

]
E[∆ NTR | G = 1, X = x]−

(
λ̂NTR
0 +

∑K
k=k0

λ̂NTR
k 1[xk = x]

) , (21)

and λ̂NTR is defined as in Equation (12).

A key insight from Proposition 4 is that the local ETI estimand neither recovers the com-
pensated elasticity nor the uncompensated elasticity if one allows for income effects, even
if one assumes no bracket switching and that elasticities are homogeneous conditional on
initial income X .10 However, it also shows that the bias term is a multiplicatively separable
function of the income effects η(x) and an observable term B(x). Therefore, if η(x) were
known or could be estimated, one could recover εc(x) and εu(x) from observed data. This
observation motivates and guides the analysis in the remainder of the paper, where we con-
sider different approaches to point identify or bound the compensated and uncompensated
earnings elasticities.

4.3 No additional assumption bounds on labor supply elasticities

In order to use Proposition 4 to construct bounds on labor supply elasticities, it is useful to re-
call that the Engel aggregation condition implies that η(x) is theoretically bounded between
−1 and 0. Thus, evaluating equations (19) and (20) for η(x) ∈ {−1, 0} produces bounds on
compensated and uncompensated earnings elasticities without imposing assumptions other
than those stated in Proposition 4.

10The result in Proposition 4 does not invoke Assumption 3. It is no longer needed since it is assumed that
elasticities are homogeneous among individuals with the same initial income X . For tractability, Proposition 4
also imposes no bracket switching, which will necessarily hold if the reform under consideration is only changing
the top income tax.
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The light grey areas of Figure 4 plot these bounds using the estimates of β(x) reported
in Figure 3 and estimates of B(x) from the cross-sectional earnings distribution. Panel (a)
provides two insights about compensated elasticities. First, the compensated elasticities
for individuals with incomes equal to 600,000 (85th percentile), 700,000 (90th percentile),
and 900,000 (95th percentile) are at least 0.2, 0.35, and 0.7, respectively. Second, the bounds
rule out larger than modest compensated elasticities for low-income individuals: the upper
bound for individuals with income 450,000 equals 0.3. Taken together, these insights imply
that compensated elasticities more than double as income increases from the median to the
95th percentile.

Panel (b) plots the corresponding bounds for the uncompensated elasticities. A key result
is that the bounds are highly informative for high-income individuals, implying a relatively
large uncompensated elasticity between 0.5 and 0.7 for individuals with incomes around
900,000. A second result is that we can rule out that income effects dominate substitution
effects for all individuals with income above 700,000. Finally, the bounds rule out large
uncompensated elasticities for individuals with incomes below 500,000.

(a) Compensated elasticity.
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(b) Uncompensated elasticity.
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Figure 4: Average (un)compensated earnings elasticities across initial income X .
Notes: The figure plots bounds on the compensated and uncompensated labor supply elasticities over the income
distribution. The light grey area in Panel (a) plots the bounds on εc(x) using that η ∈ [−1, 0], while the darker
grey area imposes that η ∈ [−0.25, 0.05]. The light grey area in Panel (b) plots the bounds on εu(x) using that
η ∈ [−1, 0], while the darker grey area imposes that η ∈ [−0.25, 0.05].

These bounds can be tightened considerably by ruling out implausibly small and large
income effects. The dark grey areas in Figure 4 represent the bounds implied by assuming
that η ∈ [−0.25,−0.05]. They show that this additional assumption tightens both the upper
bound on the compensated elasticities and the lower bound on the uncompensated elastici-
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ties considerably. The implied bounds suggest an (un)compensated elasticity of 0.1 (between
-0.2 and 0) for incomes around 450,000 NOKs. The (un)compensated elasticity is bounded
between 0.4 and 0.5 (0.25 and 0.35) for incomes around 700,000.

Although the bounds presented above are highly informative, the (un)compensated elas-
ticities remain partially identified. We next consider two ways to move from partial to point
identification. One possibility, which we consider in subsection 4.4, is to assume constant
income and substitution effects across the income distribution. Another possibility, which
we consider in Section 5, is to combine the ETI estimands with external estimates of income
effects.

4.4 Point identification with constant income and substitution effects

As shown by Gruber and Saez (2002), it is possible to use variation from tax reforms to jointly
estimate income and substitution effects under the assumption that the compensated elas-
ticity εc and the income effect η are constant across all individuals.Under this homogeneity
assumption, Proposition 4 implies that the local ETI estimands β(x) relates to the constant εc

and η through,

β(x) = εc + ηB(x). (22)

A natural way to estimate (εc, η) is the following least squares estimator

(ε̂c, η̂) = argmin
εc,η

K∑
k=k0

pk

(
β̂(xk)− εc − ηB̂(xk)

)2
(23)

where pk ≡ P(X = xk | G = 1) are weights corresponding to each point in the support of
X | X ≥ Ȳ . An estimator for the uncompensated elasticity is then ε̂u = ε̂c + η̂.

Since equation (22) must hold for any x, εc and η are (over)identified if β(x) and B(x) are
observed for (more than) two values of x. Even with only two values of x, the homogeneity
assumption can be tested by examining if the labor supply parameters satisfy the theoretical
restrictions εc > 0 and η ∈ [−1, 0]. In the overidentified case, the sharp test would not only
use these theoretical restrictions, but also that the sum of squared residuals in (23) is zero.

Using the same estimates of β(x) and B(x) as in Figure 4, we solve the problem in (23)
and obtain ε̂c = −0.26 and η̂ = 1.04. Since the estimated compensated elasticity is negative
and the income effect is positive, the homogeneity assumption is clearly at odds with the
data. In fact, we can statistically reject the assumption at any reasonable level of significance.

To understand why the assumption is rejected, it is useful to recall that the tax reform we
consider decreased the top income tax rate and, as a result, the reduction in average tax rates
is increasing in income. The assumption of constant εc and η therefore implies that earnings
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responses should decrease across the income distribution, in sharp contrast with Figure 3.
Thus, we conclude that the assumption of constant income and substitution effects poorly
approximates individual labor supply behavior, at least in our context.

5 Combining ETIs with external estimates of income effects to learn
about labor supply elasticities

Proposition 4 shows that the compensated εc(x) and uncompensated elasticities εu(x) can be
point identified from the local ETI estimands β(x) if income effects η(x) are known or can be
estimated externally for each income level x. Motivated by this result, we now use Norwe-
gian data on lottery winnings to measure income effects. We begin this analysis by estimat-
ing earnings and employment responses to lottery-induced changes in unearned income.
Next, we show how these responses allow us to infer the income effects on the intensive
margin that we need to point identify the (un)compensated elasticities.

5.1 Data and sample

Our empirical analysis combines multiple administrative data sources linked through unique
personal and household identifiers. We supplement the tax records on wealth with measures
of market values of real estate, using data on transactions in real estate, information on the
characteristics of each property, and detailed housing price indices. The resulting panel cov-
ers the entire Norwegian population from 1995 to 2018 and includes demographic charac-
teristics, detailed tax records on income and wealth, and information on lottery prizes and
asset values.

We restrict our sample to winners aged 25–61 in the year before the win and exclude
students and individuals receiving pensions or unemployment benefits. Since individuals
are only required to report winnings of NOK 100,000 or more, we restrict our sample to
those who won at least this amount.11 The final sample includes more than 14,000 unique
winners across 23 years. The median price is 343,000 NOK.

Table 5 in Appendix B compares working-age lottery winners with the general popula-
tion. It shows that winners are somewhat older, more often male, and have slightly higher
earnings. However, the two groups have similar employment rates, years of schooling, and
are equally likely to be married. By and large, we find that lottery winners are broadly simi-
lar to the working-age population.

11This threshold has been in place since 2007. Before 2007, the threshold was NOK 10,000.
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5.2 Measuring unearned income

To understand how we measure period-by-period unearned income, it is useful to start with
the household’s intertemporal budget constraint,

Ct = Yt − T (Yt) +
(
(1 + r)At−1 −At

)
︸ ︷︷ ︸

unearned income ≡Bt

, (24)

where Ct is period t consumption expenditure, At is assets held at time t, r is the net-of-tax
return rate on the asset, and Bt is the total amount of unearned income used by the house-
hold in period t, or unearned income for short.12 Lottery winnings provide an exogenous
increase in unearned income, and, as we show in Appendix E, the earnings responses to this
variation are directly linked to the individuals’ income effects.

Following Eika et al. (2020), we use our detailed data to construct household-level mea-
sures of consumption and savings. These measures allow us to compute unearned income
directly using equation (24), which we then convert to a per-adult measure for consistent
comparison between single and married households. This means that our rich data allow
us to observe how winners allocate their wealth over time, eliminating the need to rely on
the annuitization or capitalization approaches used in Imbens et al. (2001) and Golosov et al.
(2024).

5.3 Research design and estimation

Before describing our research design, it is useful to introduce some terminology. We call all
individuals who won a lottery in a given calendar year g a cohort, and denote an individual’s
cohort by G. The event time t for cohort g corresponds to calendar year g + t, where t can be
positive or negative depending on whether we look at the outcomes before or after winning
a lottery. We use the year before the lottery win as the reference year in the event study and
refer to this year as the pre-win year. Subscripts now denote calendar year.

We explain our research design by showing how we recover the earnings effect of win-
ning a lottery prize. We employ a difference-in-differences design that compares the evolu-
tion of earnings over time for individuals who have already won the lottery with those who
have yet to win. For each event time t, we compare the earnings changes between years g−1

and g + t for cohort g to changes over the same two years for cohorts that will receive the
prize at a later date, so that the comparison group remains untreated at both points in time.

12This definition of unearned income is consistent both with intertemporal two-stage budgeting in the absence
of liquidity constraints and with the presence of liquidity constraints (Arellano and Meghir, 1992; Blundell and
Macurdy, 1999; Blundell and Walker, 1986 and MaCurdy, 1983).
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Formally, we define the difference-in-differences estimand by:

RFg,t(x) ≡ E [Yg+t − Yg−1|G = g, Yg−1 = x]︸ ︷︷ ︸
earnings change for year g winners

−
earnings change for later-than g + t-winners︷ ︸︸ ︷

E [Yg+t − Yg−1|G > g + t, Yg−1 = x] . (25)

This estimand captures how earnings change for lottery winners relative to individuals with
the same pre-win earnings Yg−1 who have not yet won. We show in Appendix C that RFg,t(x)

where t ≥ 0 recovers the earnings effect of winning the lottery under a standard parallel
trends assumption.

In estimation, we implement the conditioning on Yg−1 using kernel weights and estimate
RFg,t(x) separately for each cohort g and event time t. The estimands RFg,t(x) are then ag-
gregated across cohorts using cohort-size weights. When aggregating across event time, we
weight each event time equally. For each x, we estimate all cohort-by-event-time parameters
in a single, fully interacted specification, which allows us to compute standard errors for
aggregated effects using the delta method. All specifications include flexible controls for age
to account for any systematic age differences between earlier and later winners.

5.4 The effect of winning the lottery on earnings and employment

Panel (a) of Figure 5 presents unconditional estimates of the effect of winning on winners’
earnings for different event times. The estimates show no evidence of systematically dif-
ferent pre-trends between current and future winners. They reveal that earnings decline
sharply in the first two years after winning and then stabilize at a lower level: After 3 years,
average earnings are reduced by around NOK 20,000.

The average effects in Panel (a) could mask considerable heterogeneity. Panel (b) shows
how pre- and post-win estimates vary across the distribution of pre-win earnings and shows
that pre-trends are similar between treatment and controls throughout the distribution. Fol-
lowing the win, we observe a substantial earnings reduction of around 15,000-25,000 that
increases in magnitude with pre-win income.

Figure 11 in Appendix B plots the corresponding figures for the employment response.
Panel (a) shows no evidence of systematic differences in employment time trends between
current and later winners. After winning, the employment of winners declines over time and
is reduced by 1.5 percentage points after 5 years. Panel (b) plots the pre- and post-event em-
ployment response estimates across the distribution of pre-win earnings. The employment
responses are more pronounced at lower levels of pre-win income. While winning reduces
employment by 1.25 percentage points among winners with pre-win earnings in the 10th
percentile, the corresponding response among winners with pre-win earnings in the 90th
percentile is 0.5 percentage points.
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(a) Unconditional effect on earnings
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(b) Conditional effect on earnings
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Figure 5: Earnings effects of winning
Notes: This figure presents estimates of the effect of winning the lottery on winners’ earnings. Panel (a) presents
unconditional estimates of the effect of winning the lottery on winners’ earnings for each event time t. The
estimates correspond to the sample analogue of equation (25), evaluated without conditioning on X , controlling
for age, and averaged across cohorts using cohort-size weights. The estimates in Panel (b) correspond to the
sample analogs of equation (25), evaluated at different values of X . We use a Gaussian kernel with a bandwidth
of 100,000 NOK, where the evaluation points {x} correspond to the cohort-specific deciles of pre-win earnings.
For each decile, we compute cohort-size weighted averages across cohorts and report equally weighted averages
across event times t = −5 to −2 and t = +1 to +5. 90 percent confidence intervals are shown, with standard
errors clustered at the winner level. Throughout, we use g − 1 as the omitted event time.
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5.5 The earnings response to unearned income

The size of the effects that we estimated in the previous section can be hard to gauge, as the
observed responses to windfall gains could vary across individuals depending on a number
of factors, such as the age at which the individual wins and her savings behavior. Motivated
by this, we now turn to estimating how earnings respond to plausibly exogenous variation
in unearned income generated by lottery winnings.

Using the same difference-in-differences design as above, we first recover the effect of
winning the lottery on unearned income by considering the following estimand,

FSg,t(x) ≡ E [Bg+t −Bg−1|G = g, Yg−1 = x]︸ ︷︷ ︸
unearned income change for year g winners

−
unearned income change for later-than g + t-winners︷ ︸︸ ︷
E [Bg+t −Bg−1|G > g + t, Yg−1 = x], (26)

for each g, t and x. We estimate and aggregate FSg,t(x) across cohorts and event times as we
did above.

Panel (a) of Figure 6 presents the resulting estimates. It shows no evidence of different
pre-trends between winners and later winners in any part of the distribution. Winning the
lottery increases unearned income for all income levels. The effect equals around 50,000 for
the lowest decile and gradually increases to around 80,000 in the highest decile.

To obtain the earnings response to unearned income, we take the ratio between the aggre-
gated reduced-form and first-stage estimates. Panel (b) of Figure 6 reports these IV estimates
across the distribution of pre-win earnings. It shows that the estimates are remarkably stable
across the earnings distribution. On average, an additional NOK of unearned income re-
duces earnings by 0.3. This number aligns closely with the estimates for the bottom quartile
from Golosov et al. (2024), but is lower than their reported average of 0.5, mainly because
higher-income US households are more responsive.

5.6 Recovering the intensive-margin income effect

The estimates in Figure 6 reflect a combination of intensive and extensive-margin labor sup-
ply responses, while the parameter we need to point identify (un)compensated elasticities
(η(x)) is the intensive-margin labor supply response to changes in unearned income. To
recover intensive-margin income effects, we first decompose the total earnings response to
unearned income into its intensive- and extensive-margin components.13 The decomposition
relies on an additional common-trend assumption: conditional on pre-win earnings, winners
who stay employed would have experienced the same earnings trend as later winners who
also remain employed, had the former not won.

13See Appendix C for the formal derivation of the decomposition.
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(a) Effect on unearned income
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(b) Earnings effect of unearned income
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Figure 6: Unearned income effects of winning and IV estimates
Notes: This figure presents estimates of the effect of winning the lottery on winners’ unearned income and the
earnings response per unearned income. The estimates in Panel (a) correspond to the sample analogs of equation
(26), evaluated at different values of X . We use a a Gaussian kernel with a bandwidth of 100,000 NOK, where the
evaluation points {x} correspond to the cohort-specific deciles of pre-win earnings. For each decile, we compute
cohort-size weighted averages across cohorts and report equally weighted averages across event times t = −5
to −2 and t = +1 to +5. The estimates in Panel (b) correspond to the ratio between the aggregated values of
RFt,g(x) and FSt,g(x) evaluated at different values of x. 90 percent confidence intervals are shown, with standard
errors clustered at the winner level. Throughout, we use g − 1 as the omitted event time.
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(a) Unearned income response decomposition.
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(b) Income effect.
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Figure 7: Total and intensive-margin income effects.
Notes: Panel (a) decomposes the earnings response per extra NOK of unearned income into its intensive- and
extensive- margin components according to Equation (66). Panel (b) plots the intensive-margin income effects
conditional on pre-win labor earnings. 90 percent confidence intervals are shown, with standard errors clustered
at the winner level. Throughout, we use g − 1 as the omitted event time.

Panel (a) of Figure 7 plots the results from the decomposition. It shows that the intensive-
margin component is by far the most important one, accounting for 80-85 percent of the total
response. The intensive-margin share increases with income and accounts for more than 95
percent of the total response for individuals with pre-win earnings at the 90th percentile.

To obtain the intensive-margin income response, it is useful to note that the intensive-
margin contribution equals the share of individuals who respond on the margin multiplied
by their response. To obtain the intensive-margin response, we therefore divide the intensive-
margin contribution by the share that responds on the intensive margin, i.e., the share that
continues to work after winning.

Panel (b) plots the resulting intensive-margin responses. It shows that the intensive-
margin earnings response to an additional NOK of unearned income is, on average, -0.25.
This estimate is stable across the distribution of pre-win earnings.

Finally, the income effects η(x) that we need to point identify the (un)compensated elas-
ticities can now be inferred by multiplying the intensive-margin response reported in Panel
(b) by the net-of-tax rate at the corresponding earnings level.

5.7 Point identification with external estimates of income effects

Figure 8 presents point estimates of compensated and uncompensated earnings elasticities
obtained using our estimated income effects. It shows that both elasticities are monotonically
increasing in income. Panel (a) shows that the compensated elasticity is small— around 0.1
for individuals with incomes around 400,000 NOKs (median) — but increases steadily with
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(a) Compensated elasticity.
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(b) Uncompensated elasticity.
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Figure 8: Average (un)compensated earnings elasticities across initial income X .
Notes: The figure plots point estimates of the compensated (Panel (a)) and uncompensated (Panel (b)) labor
supply elasticities over the income distribution. 90 percent confidence intervals are shown, with standard errors
obtained by assuming that the lottery-based income effects η(x) and local ETIs β(x) are uncorrelated.

income to around 0.5 for individuals with incomes around 700,000 NOKs (90th percentile).
The compensated elasticity equals 0.8 for incomes around 900,000 NOKs (95th percentile)

Panel (b) shows that the uncompensated elasticity tends to be positive, implying that
substitution effects are larger than the income effects, especially for higher incomes, where it
exceeds 0.5.

6 Revenue-maximizing tax rates and excess burden

In this section, we use our estimates of income and substitution effects to quantify the effi-
ciency cost of increasing the marginal tax rates on middle- and high-income individuals. We
also calculate the implied revenue-maximizing top-income tax rate. To do so, we begin by
tailoring the standard expressions for marginal deadweight loss (Auerbach and Hines, 2002
and Harberger, 1964) and the revenue-maximizing top income tax rate (Diamond, 1998 and
Saez, 2001) to the Norwegian institutional context by accounting for payroll and value-added
taxes. Next, we evaluate these expressions using our estimates of income and substitution
effects from Section 5.

6.1 Measuring the effective tax rate

To derive expressions for the excess burden and revenue-maximizing top-income tax rates,
it is necessary to account for the value-added and payroll taxes of the Norwegian context. To
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this end, we suppose the tax revenue collected from an individual with consumption bundle
(C1, ..., CK) and earnings Y equals,

TR(C1, ..., CK , Y ) ≡
K∑
k=1

τkPkCk︸ ︷︷ ︸
consumption tax

+

income tax︷ ︸︸ ︷
T (Y ) + τwY︸︷︷︸

payroll tax

,

where τw is the proportional payroll tax rate and τk is the tax rate on consumption good k.
The consumption tax rates τk vary across consumption goods. This means that to calcu-

late the revenue effect of changes in the income tax, one would need to know how it affects
the demand for each of the K consumption goods. To reduce the dimensionality of the prob-
lem, we specialize our model from Section 4 by assuming that individual preferences are
separable between the consumption and labor supply components:

U(C1, ..., CK , Y1, ..., YL) = Uc(C1, ..., CK)︸ ︷︷ ︸
utility from consumption

+

disutility from labor︷ ︸︸ ︷
Uy(Y1, ..., YL) .

By standard two-stage budgeting arguments, this means the uncompensated demand for
the k-th consumption good only depends on the income tax through its effect on disposable
income:

Ck = Cu
k

(
τ1, ..., τK , Iu(τ1, ..., τK , τ, R+B)︸ ︷︷ ︸

≡(1−τ)Y u(τ1,...,τK ,τ,R+B)+R+B

)
. (27)

Using these demand functions, we can express the effective consumption tax rate as

τ̃ ≡
∑K

k=1 τkPk
∂Cu

k
∂I∑K

k=1 Pk
∂Cu

k
∂I

. (28)

As we show ahead, this tax rate is a sufficient statistic for calculating how changes in the
income tax system affect the revenue raised from consumption taxes.

By assuming that each consumption good is normal, we obtain τ̃ is bounded between
the lowest and largest consumption tax rate. In our setting, this means that the effective
consumption tax rate is bounded between 0 and 0.25. We allow for any effective tax con-
sumption tax rate in this range but impose that it does not vary across individuals.14 Us-
ing average expenditure shares to proxy for the marginal expenditure shares implies that
τ̃ = 0.21.

14This is true if, for example, the consumption component of the utility function Uc is homothetic and homo-
geneous across individuals.
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6.2 Excess burden of taxation

We now quantify the efficiency cost of increasing the marginal tax rate on middle and high-
income individuals by introducing the excess burden.

Deriving the excess burden. To derive a measure of the excess burden of taxation, it is
useful to consider the individual’s expenditure minimization problem:

E(τ1, ..., τK , τ, V̄ ) ≡ min
C1,...,CK ,Y1,...,YL

∑
k=1

(1 + τk)PkCk − (1− τ)F (Y1, ..., YL)

subject to U(C1, ..., CK , Y1, ..., YL) ≥ V̄ ,

(29)

where V̄ is individual utility after the tax reform. The resulting compensated demand func-
tions can be written as Cc

k(τ1, ..., τK , τ, V̄ ) and the earnings function as Y c(τ1, ..., τK , τ, V̄ ) ≡
F (Y c

1 (τ1, ..., τK , τ, V̄ ), ..., Y c
L(τ1, ..., τK , τ, V̄ )).

These functions allow us to define the deadweight loss of taxation,

DWL(τ1, ..., τK , τ, V̄ ) ≡ E(τ1, ..., τK , τ, V̄ )− TRc(τ1, ..., τK , τ, V̄ ),

where the tax revenue TRc is given by,

TRc(τ1, ..., τK , τ, V̄ ) ≡
K∑
k=1

τkPkC
c
k(τ1, ..., τK , τ, V̄ ) + (τ + τw)Y

c(τ1, ..., τK , τ, V̄ ).

In words, the deadweight loss measures the expenditure needed, in excess of the revenue
raised, to keep an individual at utility level V̄ as they are taxed according to (τ1, ..., τK , τ).

The marginal deadweight loss is obtained by taking the derivative of DWL with respect
to τ . The excess burden EB normalizes the marginal deadweight loss by the marginal rev-
enue raised, i.e., the derivative of TRc with respect to τ :

EB ≡
E
[
∂DWL

∂τ | Y ≥ Ȳ
]

E
[
∂TRc

∂τ | Y ≥ Ȳ
] . (30)

In words, the excess burden EB measures the economic cost of increasing the marginal tax
rate slightly per additional dollar of revenue raised.

We show in Appendix D.1 that the excess burden can be expressed in terms of compen-
sated elasticities, tax rates, and earnings as:

EB =
E
[(

τ̃
1+τ̃ + τ+τw

1−τ

)
εcY | Y ≥ Ȳ

]
E
[(

1−
(

τ̃
1+τ̃ + τ+τw

1−τ

)
εc
)
Y | Y ≥ Ȳ

] . (31)
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(a) Excess burden.
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(b) Revenue-maximizing tax rate.
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Figure 9: Top-income tax rates and excess burden.
Notes: Panel (a) plots the excess burden of taxation as a function of τ̃ using our preferred estimates (the solid black
line) and using the estimates one would obtain from using the common ETI estimand, ignoring income effects,
and assuming constant labor supply elasticities (dashed grey line). Panel (b) plots the revenue-maximizing
top-income tax rates as a function of τ̃ using the same two sets of estimates. The dotted line shows the actual
top-income tax rate in Norway after the 2006 reform.

Quantifying the excess burden of taxation. We now calculate the excess burden in equa-
tion (31) under two different sets of estimates of elasticities. The first set is obtained from
our data and estimates of εc from Section 5, reported in Panel (a) of Figure 8. We refer to
these estimates as our preferred specification. The second is the compensated elasticities one
would obtain from using the common ETI estimand, ignoring income effects, and assuming
constant labor supply elasticities. Under this conventional specification, εc = 0.16 and η = 0

for all individuals.15

Panel (a) of Figure 9 plots the excess burden implied by the two sets of estimates as
functions of the effective consumption tax rate τ̃ . The solid black line shows the excess
burden using our preferred specification. It shows that increasing the marginal tax rate on
middle- and high-income individuals results in an economic loss of at least 90 cents per
dollar of additional tax revenue raised. For τ̃ = 0.21, obtained using observed expenditure
shares, the excess burden is around 1.2.

This contrasts sharply with the results obtained from using the conventional specifica-
tion, as depicted by the dashed grey line. The conventional specification implies a more
modest excess burden of 0.2-0.25, depending on the exact value of the effective tax rate τ̃ .

We conclude that ignoring income effects and heterogeneity in elasticities could lead to

15To see why, note that under homogeneous ETIs and no income effects, Corollary 2 and Proposition 3 together
imply that the ETI estimand with h(Z) = Z recovers the compensated elasticity. Hence β = 0.16 = ζ = εc.
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severely downwards-biased estimates of the excess burden. In our setting, actual efficiency
costs of taxation are 4-5 times larger than suggested by the conventional specification.

6.3 Revenue-maximizing tax rate

We now turn to deriving and calculating the revenue-maximizing top-income tax rate.

Deriving the revenue-maximizing tax rate. To derive the revenue-maximizing tax rate, it
is useful to start by considering the tax revenue collected from individuals with earnings
above Ȳ ,

E[TR | Y ≥ Ȳ ] =

consumption tax︷ ︸︸ ︷
K∑
k=1

τkpk E[Ck | Y ≥ Ȳ ] +

income tax︷ ︸︸ ︷
τ E[Y − Ȳ | Y ≥ Ȳ ] + T (Ȳ )

+ τw E[Y | Y ≥ Ȳ ]︸ ︷︷ ︸
payroll tax

,

(32)

where the expectations are taken across individuals in the top-income tax bracket.
We characterize the revenue-maximizing top-income tax rate by taking the derivative

of equation (32) with respect to the top-income tax rate τ and setting it equal to zero. As
we show in Appendix D.2, this first-order condition implies that the following equation is
satisfied,

τTOP =
α− 1− (τ̃ + τw + τwτ̃) (αε̄

u − η̄)

α− 1 + (αε̄u − η̄)
, (33)

with

ε̄u ≡ E[Y ∗εu | Y u ≥ Ȳ ]

E[Y u | Y u ≥ Ȳ ],
η̄ ≡ E[η | Y u ≥ Ȳ ], α ≡ E[Y u | Y u ≥ Ȳ ]

Ȳ
, (34)

where Y u, εu, η, α, and τ̃ are evaluated at the revenue-maximizing tax system.

Calculating the revenue-maximizing top-income tax rate. We consider the tax rate that
maximizes tax revenue on incomes above Ȳ = 450,000 NOK. Following Saez (2001) and
Saez and Stantcheva (2016), we assume that the weighted elasticities ε̄u, η̄, and the Pareto
parameter α are unaffected by the top tax rate. Using the estimates and data in Section 5,
we obtain α = 1.46, ε̄u = 0.25, and η̄ = −0.15. As above, we refer to this set of (weighted-
average) elasticities as our preferred specification. For comparison, we also calculate excess
burden under the conventional specification, obtained by using the common ETI estimand,
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ignoring income effects, and assuming constant labor supply elasticities. Under this specifi-
cation, ε̄u = 0.16 and η̄ = 0.16

Panel (b) of Figure 9 plots the revenue-maximizing top-income tax rates implied by these
two specifications as functions of the effective consumption tax rate τ̃ . The solid black line
shows the results using our preferred specification. The revenue-maximizing top rate is at
most 0.4. It declines with the effective consumption tax rate τ̃ , and reaches 0.25 when τ̃ is
at its upper bound. For τ̃ = 0.21, obtained using observed expenditure shares, the revenue-
maximizing tax rate is around 0.27. The gray dashed line uses the elasticities implied by the
conventional specification. These estimates increase the revenue-maximizing rates by almost
ten percentage points.

Interestingly, our estimates imply that the actual top-income tax rate after the 2006 re-
form, illustrated by the dotted black line, exceeds the revenue-maximizing level for any ef-
fective consumption tax rate τ̃ . This means that the government could increase revenue by
reducing top-income tax rates.

7 Conclusions

This paper examined when a commonly applied class of ETI estimands can be used to learn
about individuals’ ETI parameters and their (un)compensated elasticities of labor supply.
We provided necessary and sufficient conditions for these estimands to be given a causal
interpretation as a positively weighted average of heterogeneous ETI parameters. We then
applied these results to empirically analyze a reform of the Norwegian tax system that re-
duced the marginal tax rates on middle and high incomes. The estimated ETI parameters
increase steadily with income, meaning high-income individuals are more responsive to tax
changes than middle-income individuals.

Next, we showed how (un)compensated elasticities of labor supply can be bounded di-
rectly from the ETI estimands, or point identified by combining these estimands with exter-
nal estimates of income effects. The bounds suggest the compensated and uncompensated
elasticities of high-income individuals are at least 0.4 and 0.2, respectively. By comparison,
the compensated elasticities of middle-income individuals are bounded between 0.1 and 0.3,
while their uncompensated elasticities are close to zero or negative.

We moved from partial to point identification by combining the estimated ETI param-
eters with estimates of income effects from lottery winnings. The resulting point estimates
suggested an (un)compensated elasticity of 0.1 (-0.05) for middle-income individuals. The
(un)compensated elasticity estimates increase steadily with income to around 0.5 (0.35) for

16Under homogeneous ETIs and no income effects, Corollary 2 and Proposition 3 imply that the ETI estimand
with h(Z) = Z recovers the compensated elasticity. Hence β = 0.16 = ζ = εc = εu = ε̄u.
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high-income individuals. These findings imply a substantial excess burden of taxation, and
that reducing the top-income tax rate would increase tax revenue.
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A Proofs

Many of our results in Section 2 build on the following two lemmas, which map the ETI estimand β

to the potential outcomes for any h provided f is unrestricted.

Lemma 1. Suppose Assumptions 1 and 2 are true and let f be unrestricted over the support of X . Then, the
ETI estimand equals a weighted average conditional-on-X elasticities of taxable income,

β =

K∑
j=k0

ωh
j ζ(xj), (35)

where,

ωh
j ≡ pjϕ(xj)E[Dh | G = 1, X = xj ]∑K

l=k0
plϕ(xl)E[Dh | G = 1, X = xl]

,

where pj ≡ P(X = xj | G = 1), Dh denotes the predicted residuals resulting from regressing Gh(Z) on G

and f(X; .), and

ϕ(x) ≡ E[NTR(1)− NTR(0) | G = 1, X = x],

ζ(x) ≡ E
[

NTR(1)− NTR(0)

E[NTR(1)− NTR(0) | G = 1, X = x]
× ζ | G = 1, X = x

]
.

Proof of Lemma 1. We start by deriving the expression for the ETI estimand. This requires some addi-
tional notation.

For some fixed function h, the Frisch-Waugh-Lovell theorem allows for expressing the ETI esti-
mand as,

β ≡
E
[
∆yDh

]
E [∆ NTR Dh]

, (36)

where

Dh ≡ Gh(Z)− θ0G− f(X; θ) (37)

denotes predicted residuals from the linear projection of Gh(Z) on (G, f(X; .)) where the coefficients
are given as the solution to,

(θ0, θ) ≡ argmin
θg,θx

E
[
(Gh(Z)− θgG− f(X; θx))

2
]
. (38)

Since f is unrestricted, it can be written as:

f(x; θ) =

K∑
k=1

θk1[x = xk], (39)

where {x1, ..., xK} is the support of X .
It is useful to denote by ρ ≡ y(1)−y(0) the earnings response to the tax reform. Then, by recalling
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equation (5), we get that y = y(0)+ ρ1[Z ̸= 0]G, which implies that ∆y = ∆y(0)+ ρ1[Z ̸= 0]G. Using
equation (8) from Assumption 1, we can write,

∆y = λyG+ ρ1[Z ̸= 0]G+ fy(X) + u, (40)

with E[u | G,X] = 0. Plugging (40) into the numerator of the ETI estimand in equation (36) gives,

E[∆yDh] = E
[
(λyG+ ρ1[Z ̸= 0]G+ fy(X) + u)Dh

]
,

= E
[
ρ1[Z ̸= 0]GDh

]
,

= P(GZ ̸= 0)E[ρDh | GZ ̸= 0],

where the second equality follows from the fact that E[u | G,X] = 0 and that the moment conditions
that determine Dh since the unrestricted specification of f ensures that f(·; θ) = fy(·) for some θ. The
third equality follows from the law of total expectations.

Inserting for the linear projection Dh,

E
[
∆yDh

]
= P(GZ ̸= 0)E

[
ρDh | GZ ̸= 0

]
,

Similar reasoning yields the following expression for the denominator of equation (36),

E
[
∆ NTR Dh

]
= P(GZ ̸= 0)E

[
ϕDh | GZ ̸= 0

]
.

By combining the two terms, we obtain,

β =
E
[
ϕDh × ζ | GZ ̸= 0

]
E [ϕDh | GZ ̸= 0]

,

=
E
[
ϕDh × ζ | G = 1, X ≥ xk0

]
E [ϕDh | G = 1, X ≥ xk0

]

where we have used that P(GZ ̸= 0) cancels and that Assumption 2 implies that ρ = ϕ× ζ. From the
definition of the simulated instrument Z, it is clear that X deterministically determines Z. Thus, Dh

is a deterministic function of G and X , meaning we can write the realization of Dh for an individual
with G = g and X = x as Dh(g, x). We obtain,

β =

∑K
j=k0

pjD
h(1, xj)E [ϕ× ζ | G = 1, X = xj ]∑K

j=k0
pjDh(1, xj)E [ϕ | G = 1, X = xj ]

,

=

∑K
j=k0

pjD
h(1, xj)ϕ(xj)ζ(xj)∑K

j=k0
pjDh(1, xj)ϕ(xj)

,

=

K∑
j=k0

pjD
h(1, xj)ϕ(xj)∑K

m=k0
pmDh(1, xm)ϕ(xm)

× ζ(xj).

The result follows from noting that Dh(1, xk) = E[Dh | G = 1, X = xk] and using the definition of ωh
j .
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Lemma 2. Suppose Assumptions 1 and 2 are true and let f be flexible. Then,

Dh(1, xk) = P(G = 0 | X = xk)

(
E[h(Z) | X = xk]

−
∑K

j=1 pj P(G = 0 | X = xj)E[h(Z) | X = xj ]∑K
j=1 pj P(G = 0 | X = xj)

)
.

Proof of Lemma 2. When f is unrestricted, the first-order conditions to the minimization problem in
equation (38) yield the following moment conditions

E

[
G

(
Gh(Z)− θ0 −

K∑
k=1

θk1[X = xk]

)]
= 0, (41)

E

1[X = xk]

Gh(Z)− θ0G−
K∑
j=1

θj1[X = xj ]

 = 0, (42)

for j = 1, ...K. From (42), we obtain

E [Gh(Z)− θ0G− θk | X = xk] = 0.

Since Z is a deterministic function of X , this can be rewritten as

θk = P(G = 1 | X = xk) (E[h(Z) | X = xk]− θ0) . (43)

Next, we use equation (41) which implies that,

E[h(Z) | G = 1] = θ0 +

K∑
k=1

pkθk, (44)

where pk ≡ P(X = xk | G = 1). Substituting the expression of θk from equation (43) into the
expression above yields,

E[h(Z) | G = 1] = θ0 +
K∑

k=1

pk P(G = 1 | X = xk) (E[h(Z) | X = xk]− θ0) ,

and solving for θ0 gives,

θ0 =
E[h(Z) | G = 1]−

∑K
k=1 pk P(G = 1 | X = xk)E[h(Z) | X = xk]

1−
∑K

k=1 pk P(G = 1 | X = xk)
,

=

∑K
k=1 pk (1− P(G = 1 | X = xk))E[h(Z) | X = xk]

1−
∑K

k=1 pk P(G = 1 | X = xk)
,

=

∑K
k=1 pk (1− P(G = 1 | X = xk))E[h(Z) | X = xk]∑K

k=1 pk(1− P(G = 1 | X = xk))
.
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Dh(1, xk) can then be rewritten as,

Dh(1, xk) = E[h(Z) | X = xk]− θ0 − P(G = 1 | X = xk) (E[h(Z) | X = xk]− θ0) ,

= (1− P(G = 1 | X = xk)) (E[h(Z) | X = xk]− θ0) ,

= (1− P(G = 1 | X = xk))

×

(
E[h(Z) | X = xk]−

∑K
j=1 pj (1− P(G = 1 | X = xj))E[h(Z) | X = xj ]∑K

j=1 pj(1− P(G = 1 | X = xj))

)
,

= P(G = 0 | X = xk)

×

(
E[h(Z) | X = xk]−

∑K
j=1 pj P(G = 0 | X = xj)E[h(Z) | X = xj ]∑K

j=1 pj P(G = 0 | X = xj)

)
,

where the first equality uses equation (43) and the second substituties in the expression for θ0.

Proof of Proposition 1. We start by proving the if-part of the statement.

If h(Z) is binary and f is flexible then β is causal: Since h(Z) is binary we can write h(Z) =

h01[Z = 0] + h11[Z ̸= 0]. Lemma 2 then implies that

Dh(1, xk) =P(G = 0 | X = xk)

×

(
h1 −

h0

∑k0−1
j=1 pj P(G = 0 | X = xj) + h1

∑K
j=k0

pj P(G = 0 | X = xj)∑K
j=1 pj P(G = 0 | X = xj)

)
,

= P(G = 0 | X = xk)

×

(
h0 + (h1 − h0)−

(h1 − h0)
∑K

j=k0
pj P(G = 0 | X = xj)∑K

j=1 pj P(G = 0 | X = xj)
− h0

)
,

= P(G = 0 | X = xk)× (h1 − h0)×

(
1−

∑K
j=k0

pj P(G = 0 | X = xj)∑K
j=1 pj P(G = 0 | X = xj)

)
.

for any xk ∈ {xk0 , ..., xK}. According to Lemma 1, Dh(1, xk) appears both in the numerator and
denominator of the expression for β. Since the last two components of Dh(1, xk) do not vary with xk,
they cancel out, and we obtain:

β =

K∑
j=k0

P(X = xj | G = 1)ϕ(xj)P(G = 0 | X = xj)∑K
l=k0

P(X = xl | G = 1)ϕ(xl)P(G = 0 | X = xl)
ζ(xj). (45)
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By Bayes law, P(X = xj | G = 1) = P(G = 1 | X = xj)P(X = xj), so we obtain,

β =

K∑
j=k0

P(X = xj)P(G = 1 | X = xj)P(G = 0 | X = xj)ϕ(xj)∑K
l=k0

P(X = xl)P(G = 1 | X = xl)P(G = 0 | X = xl)ϕ(xl)
ζ(xj), (46)

=

K∑
j=k0

P(X = xj)V ar(G | X = xj)ϕ(xj)∑K
l=k0

P(X = xl)V ar(G | X = xl)ϕ(xl)
ζ(xj), (47)

where the second equality uses that G follows a Bernoulli distribution, implying that P(G = 1 | X =

xj)P(G = 0 | X = xj) = V ar(G | X = xj).
Assumption 3 ensures that ζ(xk) is a positively weighted average ζ and that the sign of ϕ(xk)

does not change with k. Since probabilities and variances are non-negative, it follows that the ETI
estimand recovers a positively weighted average of individual elasticities.

If h(Z) is not binary and f is flexible then β is not causal: For β to be causal, it must be the
case that the sign of,(

E[h(Z) | X = xk]−
∑K

j=1 pj P(G = 0 | X = xj)E[h(Z) | X = xj ]∑K
j=1 pj P(G = 0 | X = xj)

)
(48)

does not change with k0 ≥ k ≤ K for any distribution of X . We prove that it is always possible to
construct a distribution of X where these weights change sign in the case when h(Z) takes on more
than two values. Let,

h(Z) =

h0 if X < Ȳ ,∑K
k=k0

1[X = xk]hk if X = Ȳ .
(49)

where (h0, hk0
, ..., hK) is the support of h(Z). Using this, we can write the weights as

K∑
k=k0

hk1[X = xk]−
∑K

j=1 P(X = xj)V ar(G | X = xj)hk∑K
j=1 P(X = xj)V ar(G | X = xj)

.

The last term is a convex combination of the points in the support of h(Z). This means that, depending
on the distribution of X , it can take on any value between the smallest and largest value of hk. Thus,
it is always possible to construct a distribution of X such that the convex combination is between any
two values hk′ , hk′′ with k′, k′′ ≥ k0, meaning negative weights will emerge.

If h(Z) is binary and f is not flexible then β is not causal: Suppose that ζ is constant across
individuals and consider the IV regression model:

∆y = αy
0G+ β∆ NTR +f(X;αy) + uy, (50)

∆ NTR = αNTR
0 G+ αG1[Z ̸= 0] + f(X;αNTR) + uNTR. (51)
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Assumptions 1 and 2 then imply that

∆y = λyG+ f(X;αy) + ζ∆ NTR +uy. (52)

with uy ≡ fy(X)− f(X; θ) + ∆y(0)− E[∆y(0) | X,G]. The standard exogeneity assumption requires
that Cov(uy, G1[Z ̸= 0]) = 0. Note that,

Cov(uy, G1[Z ̸= 0]) = Cov(fy(X)− f(X; θ) + ∆y(0)− E[∆y(0) | X,G], G1[Z ̸= 0]),

= Cov(fy(X)− f(X; θ), G1[Z ̸= 0]),

= P(GZ ̸= 0)
(
E[fy(X)− f(X; θ) | GZ ̸= 0]

− E[fy(X)− f(X; θ)]
)
.

Unless f is unrestricted so that fy(X) = f(X; θ) for all X , E[fy(X)− f(X; θ) | GZ ̸= 0] ̸= E[fy(X)−
f(X; θ)] meaning that exogeneity generally fails.

Proof of Corollary 1. From the proof of Proposition 1, we have that

β =

K∑
j=k0

P(X = xj)V ar(G | X = xj)ϕ(xj)∑K
l=k0

P(X = xl)V ar(G | X = xl)ϕ(xl)
ζ(xj). (53)

Note that by the law of iterated expectaions we obtain

ζ(xk) =

J∑
j=1

P(ϕ = ϕj | G = 1, X = xk)ϕj∑J
l=1 P(ϕ = ϕl | G = 1, X = xk)ϕl

E[ζ | G = 1, X = xk, ϕ = ϕj ],

ϕ(xk) =

J∑
j=1

P(ϕ = ϕj | G = 1, X = xk)ϕj .
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Letting ζk,j ≡ E[ζ | G = 1, X = xk, ϕ = ϕj ] and substituting these equations into (53), we obtain

β =

K∑
j=k0

P(X = xj)V ar(G | X = xj)ϕ(xj)∑K
l=k0

P(X = xl)V ar(G | X = xl)ϕ(xl)

∑J
j=1 P(ϕ = ϕj | G = 1, X = xk)ϕj

ϕ(xk)
ζk,l,

=

∑K
j=k0

∑J
j=1 P(X = xj)P(ϕ = ϕj | G = 1, X = xk)V ar(G | X = xj)ϕjζk,l∑K

l=k0
P(X = xl)V ar(G | X = xl)ϕ(xl)

,

=

∑K
j=k0

∑J
j=1 P(X = xj , ϕ = ϕj | G = 1)V ar(G | X = xj)ϕjζk,l∑K

l=k0
P(X = xl)V ar(G | X = xl)ϕ(xl)

,

=

∑K
j=k0

∑J
j=1 P(X = xj , ϕ = ϕj | G = 1)V ar(G | X = xj)ϕjζk,l∑K

l=k0
P(X = xl)V ar(G | X = xl)

∑J
j=1 P(ϕ = ϕj | G = 1, X = xl)ϕj

,

=

∑K
j=k0

∑J
j=1 P(X = xj , ϕ = ϕj | G = 1)V ar(G | X = xj)ϕjζk,l∑K

l=k0

∑J
j=1 V ar(G | X = xl)P(X = xl, ϕ = ϕj | G = 1, X = xl)ϕj

,

=

K∑
j=k0

J∑
j=1

P(X = xj , ϕ = ϕj | G = 1)V ar(G | X = xj)ϕj∑K
l=k0

∑J
j=1 V ar(G | X = xl)P(X = xl, ϕ = ϕj | G = 1, X = xl)ϕj

× ζk,l.

Proof of Corollary 2. When ζ is constant across individuals, then ζ(xk) = ζ(xl) = ζ for any k, l. Thus,
by Lemma 1:

β =

K∑
j=k0

pjD
h(1, xj)ϕj∑K

m=k0
pmDh(1, xm)ϕm

× ζ,

= ζ

∑K
j=k0

pjD
h(1, xj)ϕj∑K

m=k0
pmDh(1, xm)ϕm

= ζ.

Proof of Proposition 2. Start by noting that equation (5) and the definition of k0 imply

E[∆y | G,X] =

E[∆y(0) + ρ | G,X] if G = 1 and X ≥ xk0
,

E[∆y(0) | G,X] otherwise.

Thus, under assumption 1, the regression of ∆y on G and dummies for each value of X on the sub-
sample with GZ = 0 recovers

E[∆y(0) | G = g,X = x] = λ̂y
0g +

K∑
k=1

λ̂y
k1[x = xk],
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for each x in the support of X . Thus, for any x ≥ xk0
, the numerator of β(x) equals,

E[∆y | G = 1, X = x]−

(
λ̂y
0g +

K∑
k=k0

λ̂y
k1[x = xk]

)
,

=E[∆y(0) + ρ | G = 1, X = x]− E[∆y(0) | G = 1, X = x],

=E[ϕ× ζ | G = 1, X = x],

=ϕ(x)× ζ(x),

where the second equality follows from Assumption 2. Corresponding arguments show that the
denominator of the β(x) equals,

E[∆ NTR | G = 1, X = x]−

(
λ̂NTR
0 g +

K∑
k=k0

λ̂NTR
k 1[x = xk]

)
= ϕ(x).

Thus, the local ETI estimand can be written as,

β(x) =
ϕ(x)ζ(x)

ϕ(x)
= ζ(x)

=

J∑
j=1

P(X = x, ϕ = ϕj | G = 1)ϕj∑J
l=1 P(X = x, ϕ = ϕl | G = 1)ϕl

× E[ζ | G = 1, X = x, ϕ = ϕj ],

where the second line uses the law of iterated expectations, completing the proof.

Proof of Proposition 3. The result follows from the proof of Proposition 4. Specifically, by noting that
with no income effects (η = 0),

log Y (τ,R) ≈ yt + εu log

(
1− τ

1− τt

)
+

η(R−Rt)

(1− τt)Yt
= yt + εc log

(
1− τ

1− τt

)
.

Thus,

log Y (τ(d), R(d)) = yt + εc log

(
1− τ(d)

1− τt

)
= ζ log

(
1− τ(d)

1− τt

)
+ ν(d),

meaning that ζ = εc and yt = ν(0) = ν(1).

Proof of Proposition 4. We start by deriving the first-order approximation to the (log-)earnings function
log Y (τ,R) with respect to changes in log(1−τ) and R around the observed virtual income tax system
(τt, Rt). Start by noting that log Y (τ,R) = log Y (1− exp(log(1− τ)), R). Taking the derivative with
respect to log(1− τ) then gives,

∂ log Y

∂ log(1− τ)
=

∂Y

∂1− τ

1− τ

Y
= εu.
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Taking the derivative with respect to R,

∂ log Y

∂R
=

1

Y

∂Y

∂R
=

η

(1− τ)Y
.

This means the first-order approximation to log Y (τ,R) around τt, Rt equals,

log Y (τ,R) ≈ yt + εu log

(
1− τ

1− τt

)
+

η(R−Rt)

(1− τt)Yt
.

Substituting in the potential marginal tax rates and virtual incomes defined in equation (18) gives,

y(τ(1), R(1))− y(τ(0), R(0)) = εu log

(
1− τ(1)

1− τ(0)

)
+

η(R(1)−R(0))

(1− τt)Yt
,

= εcϕ+ η

(
ϕ+

R(1)−R(0)

(1− τt)Yt

)
,

where the second equality uses the Slutsky equation and the definition of ϕ. Now, consider a treated
individual (i.e., with GZ ̸= 0). Focusing on the last term, we can write,

ϕ+
R(1)−R(0)

(1− τt)Yt
= log

(
1− τ(1)

1− τ(0)

)
+

τ(1)Y (1)− T1(Y (1))− (τ(0)Y (0)− T0(Y (0)))

(1− τt)Yt
,

≈ −τ(1)− τ(0)

1− τ(1)
+

τ(1)Y (1)− T1(Y (1))− (τ(0)Y (1)− T0(Y (1)))

(1− τt)Yt
,

= −τ(1)− τ(0)

1− τ(1)
+

(τ(1)− τ(0))Y (1)

(1− τ(1))Y (1)
+

−T1(Y (1)) + T0(Y (1))

(1− τt)Yt
,

= −T1(Yt)− T0(Yt)

(1− τt)Yt
,

where the first equality uses the definitions of τ(d) and R(d). The second eqality is obtained from
taking a first-order approximation of the the log term around τ(1) = τt and using the no bracket
switching assumption, while the third and forth lines obtain from rearranging and exploiting that
Yt = Y (1) and τt = τ(1) provided GZ ̸= 0.

From the proof of Proposition 2, we obtain that,

β(x) =
E [y(1)− y(0) | G = 1, X = x]

ϕ(x)
,

=
E
[
εcϕ+ η

(
ϕ+ R(1)−R(0)

(1−τt)Yt

)
| G = 1, X = x

]
ϕ(x)

,

= εc(x) + η(x)
E
[(

ϕ+ R(1)−R(0)
(1−τt)Yt

)
| G = 1, X = x

]
ϕ(x)

,

= εc(x)− η(x)
E
[
T1(Yt)−T0(Yt)

(1−τt)Yt
| G = 1, X = x

]
ϕ(x)

.
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Under Assumption 1, we have that

ϕ(x) = E[∆ NTR | G = 1, X = x]−

(
λ̂NTR
0 g +

K∑
k=k0

λ̂NTR
k 1[x = xk]

)
.

Re-arranging gives the first part of the result:

εc(x) = β(x) + η(x)
E
[
T1(Yt)−T0(Yt)

(1−τt)Yt
| G = 1, X = x

]
E[∆ NTR | G = 1, X = x]−

(
λ̂NTR
0 g +

∑K
k=k0

λ̂NTR
k 1[x = xk]

) .
The second part of the result follows by adding η(x) to both sides of the equation and using the
Slutsky equation: εu(x) = εc(x) + η(x).
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B Appendix figures and tables

Table 4: Summary statistics for ETI sample

Full sample Estimation sample
Reform cohorts Placebo cohorts

Demographics
Age 40.70 40.86 40.66
Education 12.14 12.31 12.29
Male 57.20 62.80 64.80
Married 61.60 57.70 61.30

Income and taxes
Taxable income X 443 470 468
Income taxes T (X) 130 131 139
Marginal tax rate T ′(X) 0.414 0.424 0.430

Observations 5,702,759 2,333,992 1,677,302
Individuals 1,346,358 961,832 796,533

Notes: This table reports summary statistics for the sample used in the estimation of the elasticity of tax-
able income (ETI). Monetary values are consumer-price-index adjusted and reported in 1,000 2018 NOKs (8.13
NOK/USD), and binary outcomes are reported in percent. Observations from 2002-2004 comprise the placebo
cohorts, while observations from 2005-2007 comprise the reform cohorts.
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Figure 10: Local employment effects across initial income X .

Notes: The figure plots the local employment effects obtained by first estimating the counterfactual change in
employment using 50 quantile bins of X , then estimating the numerator of equation (12) using a local regression,
with the change in employment replacing the change in log incomes. 90 percent confidence intervals are shown,
with standard errors obtained by bootstrapping the entire estimation procedure using 500 replications.
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Table 5: Summary statistics of individual characteristics and labor market outcomes for lot-
tery sample

Winners Population

Labor earnings 489,213 447,720
Employment 0.98 0.96
Age 45.01 42.20
Male 0.61 0.52
Married 0.55 0.55
Years of schooling 11.93 12.17
Household size 2.82 2.95

Q1 share 0.18 0.25
Q2 share 0.25 0.25
Q3 share 0.27 0.25
Q4 share 0.30 0.25

Notes: Monetary values are consumer-price-index adjusted and reported in 2018 NOK (8.13 NOK/USD). Win-
ners’ values are measured one year prior to the win and cohort-size weighted. Population statistics cover ages
25–61 from 1996–2017. Net worth is at the household level, normalized by the number of adults. The second
panel reports the share of winners in each quartile of the annual earnings distribution of the working-age popu-
lation; for the population, each share is mechanically 0.25.
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(a) Unconditional effect on employment
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(b) Conditional effect on employment
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Figure 11: Employment effects of winning
Notes: This figure presents estimates of the effect of winning the lottery on winners’ employment. Panel (a)
presents unconditional estimates of the effect of winning the lottery on winners’ employment for each event
time t. The estimates correspond to the sample analogue of equation (25) using employment as an outcome
instead of earnings, evaluated without conditioning on X , controlling for age, and averaged across cohorts
using cohort-size weights. The estimates in Panel (b) correspond to the sample analogues of equation (25) using
employment as an outcome instead of earnings, evaluated at different values of X . We use a Gaussian kernel
with a bandwidth of 100,000 NOK, where the evaluation points {x} correspond to the cohort-specific deciles of
pre-win earnings. For each decile, we compute cohort-size weighted averages across cohorts and report equally
weighted averages across event times t = −5 to −2 and t = +1 to +5. 90 percent confidence intervals are shown,
with standard errors clustered at the winner level. Throughout, we use g − 1 as the omitted event time.
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C Formal identification results for the lottery design

This appendix derives the formal identification results underlying our empirical strategy for the lot-
tery design. We first map potential outcomes to observed data, show that the reduced-form estimand
identifies the causal earnings effect under a conditional parallel-trends assumption, and then establish
the decomposition of the total earnings response into intensive- and extensive-margin components.

Mapping potential outcomes to observed data. Let Wg,t(d) denote the potential outcome W t

years after winning (d = 1) or not winning (d = 0) the lottery in year G = g, for W ∈ {Y,B}, where Y

and B denote earnings and unearned income, respectively. Potential outcomes map to the observed
data through

Wg+t = 1[G ≤ g + t]WG,t(1) + 1[G > g + t]Wg,t(0). (54)

Earnings, employment, and unearned income effects of winning the lottery. We start
by stating the parallel trends assumption we rely on for obtaining the effect of winning the lottery
on earnings and unearned income. It says that conditional on pre-win earnings Yg−1 = x, average
earnings and unearned income for winners and later-winners would have evolved in parallel:

E[Wg,t(0)−Wg,−1(0) | Yg−1 = x, G = g]

= E [Wg,t(0)−Wg,−1(0) | Yg−1 = x, G > g + t] ,
(55)

for all t ≥ 0 and W ∈ {Y,B}. Under this assumption, the reduced form estimand RFg,t(x) (FSg,t(x))
recovers the average earnings (unearned income) effect of winning the lottery for cohort g. To see
why, note that

RFg,t(x) ≡ E[Yg+t − Yg−1 | Yg−1 = x,G = g]− E[Yg+t − Yg−1 | Yg−1 = x,G > g + t]

= E[YG,t(1)− Yg,−1(0) | Yg−1 = x,G = g]− E[Yg,t(0)− Yg,−1(0) | Yg−1 = x,G > g + t]

= E[Yg,t(1)− Yg,t(0) | Yg−1 = x,G = g]

+
(
E[Yg,t(0)− Yg,−1(0) | Yg−1 = x,G = g]− E[Yg,t(0)− Yg,−1(0) | Yg−1 = x,G > g + t]

)
,

for all t ≥ 0. By the parallel-trends assumption (55), the term in parentheses equals zero, and hence

RFg,t(x) = E[Yg,t(1)− Yg,t(0) | Yg−1 = x, G = g] .

Analogous arguments apply to unearned income and employment.
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Aggregating across cohorts and event times. We aggregate the cohort and event-time specific
reduced form and first stage estimands according to

RF(x) ≡
∑
g∈G

P(G = g | Yg−1 = x)
1

5

5∑
t=1

RFg,t(x), (56)

FS(x) ≡
∑
g∈G

P(G = g | Yg−1 = x)
1

5

5∑
t=1

FSg,t(x). (57)

The ratio between the two estimands then recovers

RF(x)

FS(x)
=
∑
g∈G

5∑
t=1

ωg,t(x)
E[Yg,t(1)− Yg,t(0) | Yg−1 = x,G = g]

E[Bg,t(1)−Bg,t(0) | Yg−1 = x,G = g]
, (58)

with weights

ωg,t(x) =
P(G = g | Yg−1 = x) E[Bg,t(1)−Bg,t(0) | Yg−1 = x,G = g]∑

j∈G
∑5

k=1 P(G = j | Yg−1 = x) E[Bj,k(1)−Bj,k(0) | Yg−1 = x,G = j]
. (59)

The weights are positive and sum to one provided unearned income increases with the prize.

Recovering intensive-margin income effects To isolate the intensive-margin earnings response,
we restrict attention to individuals who would be working t years after winning. We impose that con-
ditional on pre-win earnings Yg−1 = x, individuals in cohort g who would be working at event time
t would have experienced the same counterfactual earnings evolution as later winners who are ob-
served to be working in year g + t:

E[Yg,t(0)− Yg,−1(0) |Yg−1 = x, G = g, Yg,t(1) > 0]

= E [Yg,t(0)− Yg,−1(0) |Yg−1 = x, G > g + t, Yg,t(0) > 0] .
(60)

Two features of our setting make this assumption plausible. First, conditioning on pre-win earnings
absorbs most systematic differences in earnings capacity and labor-market attachment. Second, the
extensive-margin response is small, so conditioning on being employed at g + t selects nearly the
same individuals in the treated and control groups. Together, these features substantially mitigate
concerns about selection.

Under (60), the intensive-margin reduced form becomes

RFintg,t (x) ≡ E[Yg+t − Yg−1 | Yg−1 = x,G = g, Yg+t > 0]

− E[Yg+t − Yg−1 | Yg−1 = x,G > g + t, Yg+t > 0]

= E[Yg,t(1)− Yg,t(0) | Yg−1 = x,G = g, Yg,t(1) > 0] .

The corresponding intensive-margin first stage recovers

FSintg,t (x) = E[Bg,t(1)−Bg,t(0) | Yg−1 = x,G = g, Yg,t(1) > 0] . (61)
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Our assumption of constant income effects conditional on Yg−1, implies that

Yg,t(1) = Yg,t(0) +
η(x)

1− τ
(Bg,t(1)−Bg,t(0)) ,

for individuals who work after winning. Substituting this into the intensive-margin reduced form
RFintg,t (x), we obtain

RFintg,t (x)

FSintg,t (x)
=

η(x)

1− τ
. (62)

Decomposing the total earnings response. To decompose the total earnings effect per addi-
tional NOK of unearned income into the intensive- and extensive margin contributions, it is useful to
introduce notation for being employed, Eg+t = 1[Yg+t > 0] and define the extensive-margin reduced
form estimand by

RFextg,t (x) ≡ E[Eg+t − Eg−1 | Yg−1 = x,G = g]− E[Eg+t − Eg−1 | Yg−1 = x,G > g + t]. (63)

Under the parallel trends assumption and the additional assumption that employment decreases in
lottery winnings, the extensive-margin reduced form estimand recovers:

RFextg,t (x) = −P(Yg,t(0) > 0, Yg,t(1) = 0 | Yg−1 = x,G = g). (64)

By the law of total expectations, the total earnings effect can be written as:

total effect=RFg,t(x)︷ ︸︸ ︷
E[Yg,t(1)− Yg,t(0) | Yg−1 = x,G = g]

=

intensive margin component︷ ︸︸ ︷
P(Yg,t(1) > 0 | Yg−1 = x,G = g)︸ ︷︷ ︸

employment share =P(Yg,t>0|Yg−1=x,G=g)

×E[Yg,t(1)− Yg,t(0) | Yg−1 = x,G = g, Yg,t(1) > 0]︸ ︷︷ ︸
intensive margin response=RFint

g,t (x)

extensive margin response=RFext
g,t (x)︷ ︸︸ ︷

−P(Yg,t(1) = 0, Yg,t(0) > 0 | Yg−1 = x,G = g)×E[Yg,t(0) | Yg−1 = x,G = g, Yg,t(1) = 0, Yg,t(0) > 0]︸ ︷︷ ︸
extensive margin component

.

Since there is only one unknown quantity in the expression, we can solve for it to obtain the average
Yg,t(0) for those who would stop working if they won:

E[Yg,t(0) | Yg−1 = x,G = g, Yg,t(1) = 0, Yg,t(0) > 0] =
RFg,t(x)− pg,t(x)RFintg,t (x)

−RFextg,t (x)
(65)
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where the employment share is denoted by pg,t(x) ≡ P(Yg,t > 0 | Yg−1 = x,G = g). Dividing the total
effect by the first stage then yields:

RFg,t(x)

FSg,t(x)
=

pg,t(x)

FSg,t(x)
× RFintg,t (x)︸ ︷︷ ︸

intensive-margin component

+

extensive-margin component︷ ︸︸ ︷
RFg,t(x)− pg,t(x)RFintg,t (x)

FSg,t(x)
. (66)

Since all the quantities in the expression are either identified or functions of the data, the decomposi-
tion is identified.
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D Derivation of revenue-maximizing tax rate and marginal dead-
weight loss of income taxation with consumption and payroll
taxes

D.1 Marginal deadweight loss

It is useful to start by noting that

dDWL

dτ
= Y −

K∑
k=1

τkPk
∂Cc

k

∂τ
− Y − (τ + τw)

∂Y c

∂τ
,

= −

(
K∑

k=1

τkPk
∂Cc

k

∂τ
+ (τ + τw)

∂Y c

∂τ

)
,

where the first equality uses the envelope theorem. It is well-known from duality theory that the
following equality between the compensated and uncompensated demand functions holds.

Cc
k(τ1, ..., τK , τ, V̄ ) = Cu

k (τ1, ..., τK , τ, E(τ1, ..., τK , τ, V̄ )),

where E(.) is the expenditure function defined in equation (29). Two-step budgeting implies that,

Cc
k(τ1, ..., τK , τ, V̄ ) = Ck(τ1, ..., τK , I(τ1, ..., τK , τ, E(τ1, ..., τK , τ, V̄ ))).

Taking the derivative of the compensated demand function with respect to τ thus yields,

∂Cc
k

∂τ
=

∂Cu
k

∂I

(
∂I

∂τ
+

∂I

∂R

∂E

∂τ

)
.

By recalling that

I(τ1, ..., τK , τ, R) = (1− τ)Y u(τ1, ..., τK , τ, R) +R,

we obtain

∂I

∂τ
+

∂I

∂R

∂E

∂τ
= −Y + (1− τ)

∂Y u

∂τ
+

[
(1− τ)

∂Y u

∂R
+ 1

]
∂E

∂τ
,

= −Y + (1− τ)
∂Y u

∂τ
+

[
(1− τ)

∂Y u

∂R
+ 1

]
Y,

= −(1− τ)
εuY

1− τ
+ ηY,

= −εcY,

where the second-to-last equality uses the definition of the uncompensated elasticity and the last
equality uses the Slutsky equation.

58



This implies that we can write the sum in the expression for the MDWL as

K∑
k=1

τkPk
∂Cc

k

∂τ
= −εcY

K∑
k=1

τkPk
∂Ck

∂I
,

= −εcY
τ̃

1 + τ̃
,

where the second equality uses the definition of τ̃ from equation (28) and equation (67) below.
The marginal deadweight loss can now be written as

MDWL = εcY
τ̃

1 + τ̃
+ (τ + τw)

εcY

1− τ
,

which, after rearranging, yields the expression in the numerator of equation (31). To derive the
marginal (compensated) tax revenue, we note that

∂TRc

∂τ
=

K∑
k=1

τkPk
∂Cc

k

∂τ
+ Y + (τ + τw)

∂Y c

∂τ
,

= Y −MDWL.

The expression in the denomiator of equation (31) follows immediately.

D.2 Revenue-maximizing tax rate

By standard arguments, increasing the top-income tax rate by dτ is equivalent to the marginal tax
rate changing by dτ and the virtual transfer changing by dτȲ in a linear tax system. The effect on
government revenue can, therefore, be expressed as,

dTR

dτTOP
=

K∑
k=1

τkPk

(
∂Cu

k

∂τ
+

∂Cu
k

∂R
Ȳ

)
+ (Y u − Ȳ ) + (τ + τw)

(
∂Y u

∂τ
+

∂Y u

∂R
Ȳ

)
.

Using the demand functions in equation (27), we obtain,

∂Cu
k

∂τ
+

∂Cu
k

∂R
Ȳ =

∂Cu
k

∂I

(
−Y u + Ȳ + (1− τ)

(
∂Y u

∂τ
+

∂Y u

∂R
Ȳ

))
.

Substituting this back into the expression above, we get that

dTR

dτTOP
=

(
−(Y u − Ȳ ) + (1− τ)

(
∂Y u

∂τ
+

∂Y u

∂R
Ȳ

)) K∑
k=1

τkPk
∂Cu

k

∂I

+ (Y u − Ȳ ) + (τ + τw)

(
∂Y u

∂τ
+

∂Y u

∂R
Ȳ

)
.
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Using the defintion of τ̃ from equation (28), we have that,

1 + τ̃ =

∑K
k=1(1 + τk)Pk

∂Ck

∂I∑K
k=1 Pk

∂Cu
k

∂I

=
1∑K

k=1 Pk
∂Cu

k

∂I

,

where the second equality follows since the budget constraint ensures that
∑K

k=1(1+ τk)Pk∂C
u
k /∂I =

1. This means that

K∑
k=1

Pk
∂Cu

k

∂I
=

1

1 + τ̃
.

which implies,

K∑
k=1

τkPk
∂Cu

k

∂I
=

τ̃

1 + τ̃
. (67)

Using this, the revenue effect can be written as,

dTR

dτTOP
=

(
−(Y u − Ȳ ) + (1− τ)

(
∂Y u

∂τ
+

∂Y u

∂R
Ȳ

))
τ̃

1 + τ̃

+ (Y u − Ȳ ) + (τ + τw)

(
∂Y u

∂τ
+

∂Y u

∂R
Ȳ

)
,

= −(Y u − Ȳ )
τ̃

1 + τ̃
+ (Y u − Ȳ )

+

(
(τ + τw) + (1− τ)

τ̃

1 + τ̃

)(
∂Y u

∂τ
+

∂Y u

∂R
Ȳ

)
,

=
Y u − Ȳ

1 + τ̃
+

(
τw +

τ + τ̃

1 + τ̃

)(
∂Y u

∂τ
+

∂Y u

∂R
Ȳ

)
From the definitions of the uncompensated elasticity and income effect, we obtain that,

∂Y u

∂τ
= −Y uεu

1− τ
,

∂Y u

∂R
=

η

1− τ
.

Substituting this into the expression above,

dTR

dτTOP
=

Y u − Ȳ

1 + τ̃
+

τw(1 + τ̃) + τ + τ̃

(1 + τ̃)(1− τ)

(
−εuY u + ηȲ

)
At the revenue-maximizing tax rate, it must be the case that further increases in the top-income tax
rate do not affect revenue. Thus,

E
[
dTR

dτTOP
| Y ≥ Ȳ

]
= E

[
Y u − Ȳ

1 + τ̃
+

τw(1 + τ̃) + τTOP + τ̃

(1 + τ̃)(1− τTOP)

(
−εuY u + ηȲ

)
| Y ≥ Ȳ

]
= 0,

where the expectation is taken across individuals in the top-income tax bracket. Using the definitions
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from equation (34) and the assumption that τ̃ is constant across individuals, we obtain,

E[Y u − Ȳ | Y u ≥ Ȳ ]

1 + τ̃
+

τw(1 + τ̃) + τTOP + τ̃

(1 + τ̃)(1− τTOP)

(
−ε̄u E[Y u | Y u ≥ Ȳ ] + η̄ȳ

)
= 0,

(α− 1)ȳ

1 + τ̃
+

τw(1 + τ̃) + τTOP + τ̃

(1 + τ̃)(1− τTOP)
(−ε̄uαȳ + η̄ȳ) = 0,

(α− 1) +
τw(1 + τ̃) + τTOP + τ̃

1− τTOP
(−ε̄uα+ η̄) = 0

where the second line uses the defintion of α and the third multiplies both sides by (1 + τ̃)/Ȳ . Rear-
ranging, we obtain,

τw(1 + τ̃) + τTOP + τ̃

1− τTOP
=

α− 1

ε̄uα− η̄
.

Solving for τTOP, we arrive at

τTOP =
α− 1− (τ̃ + τw + τw τ̃) (αε̄

u − η̄)

α− 1 + (αε̄u − η̄)
.
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E Dynamic labor supply model

This appendix shows how the static model in Section 4 relates to a standard dynamic life-cycle model
following Blomquist (1985), Blundell and Walker (1986), and MaCurdy (1983). For simplicity, we
abstract from non-linear labor income taxation, assume that the return on capital is fixed over time
and focus on the case where there is only one consumption good and one margin of labor supply per
period.

Consider an individual who won ξ dollars at time g with wealth Ag−1. They solve:

max
{Ct,Yt,At}T

t=g

T∑
t=g

βtU(Ct, Yt), subject to Cg +Ag = (1− τ)Yg + (1 + r)Ag−1 + ξ,

Ct +At = (1− τ)Yt + (1 + r)At−1, and AT ≥ 0 for all t > g.

(68)

The solution to the problem depends on the lottery winnings, so we write Ct(ξ), Yt(ξ) and At(ξ) for
all t ≥ g. The following first-order condition determines labor supply in period t:

∂U

∂C
(1− τ) +

∂U

∂Y
= 0,

where the derivatives are evaluated for consumption C = (1 − τ)Yt(ξ) + Bt(ξ) with Bt(ξ) ≡ (1 +

r)At−1(ξ)−At(ξ) + 1[t = g]ξ and earnings Y = Yt(ξ). This means we can write labor supply as

Yt(ξ) = Y (τ,Bt(ξ)),

The effect at time t of winning an additional dollar is given by

dYt

dξ
and

dBt

dξ
.

Moreover, by the chain rule

dYt

dξ
=

∂Y

∂B

dBt

dξ
=

η

1− τ

dBt

dξ
,

where η is the same parameter as in the static model in Section 4. Thus, the dynamic model implies
the income effect is related to the earnings and unearned income effect of lottery winnings through,

∂Yt/∂ξ

∂Bt/∂ξ
=

η

1− τ
.
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